F=ma
11.6=3.8*a
a=11.6/3.8
a=3.05m/s
Answer: The differences between terrestrial planets and the giant planets are s follows-
- The inner planets namely Mercury, Venus, Earth and Mars are the terrestrial planets, whereas the outer planets namely Jupiter, Saturn, Uranus and Neptune are known as the outer planets.
- Inner planets are composed mainly of silicate materials as well as some metals, whereas the giant planets are comprised of water (in different states) and gases such as Hydrogen and Helium.
- The density of the inner planets are more in comparison to the outer planets, where earth has the highest of about 5.5 gm/cm³ and Saturn has the lowest of about 0.7 gm/cm³.
- Due to the location of the inner planets near to the sun, they have high boiling point, whereas outer planets are much far from the sun so they have a low boiling point.
Responder:
13,01 m / s
Explicación:
Paso uno:
datos dados
masa de la persona 1 m = 80 kg
velocidad de la persona 1 v = 9 m / s
masa de la persona 2 M = 55kg
velocidad de la persona 2 v =?
Segundo paso:
la expresión del impulso se da como
P = mv
para la primera persona, el impulso es
P = 80 * 9
P = 720N
Paso tres:
queremos que la segunda persona tenga el mismo impulso que la primera, por lo que la velocidad debe ser
720 = 55v
v = 720/55
v = 13,09
v = 13,01 m / s
Por lo tanto, la magnitud de la velocidad debe ser 13.01 m / s.
Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
![F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f](https://tex.z-dn.net/?f=F_i%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3EThe%20electrostatic%20force%2C%20Ff%2C%20in%20the%20final%20configuration%20is%20%3C%2Fp%3E%3Cp%3E%5Btex%5DF_f%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B3Q%5E2%2F8%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3ETherefore%2C%20the%20relation%20between%20Fi%20and%20Ff%20is%20as%20follows%3C%2Fp%3E%3Cp%3E%5Btex%5DF_i%20%3D%20F_f%5Cfrac%7B3%7D%7B8%7D%5C%5C8F_i%20%3D%203F_f)