Answer:
Body weighs lesser in water because of the upward force (buoyant force) which acts on our body thereby reducing our actual weight. This is our apparent weight.
Explanation:
hope it helps
Answer:
Options A and B.
Explanation:
Gravitational acceleration, initial height, intial speed and time are required to determine final speed. The option D is incorrect, since speed varies in time. Option C is dimentionally wrong.
The correct strategy is calculating the initial height from option B. Later, substituting time in equation A to derive an expression of the final velocity in terms of position. Hence, the required equations are options A and B.
Velocity = distance / time
v = (15*1000)m / (2*60*60)s
v=2.08 m / s
Answer: C. gravitational kinetic
Explanation: Gravitational potential energy is the energy calculated from an object's mass height and the acceleration due to gravity. The gravitational potential energy is the energy an object has as a result of the position of the object in a gravitational field.
Answer:
the time Joshua travels 1 mile is 12.5 min
Explanation:
Let's start by finding the distance traveled on each lap,
Let's reduce everything to the SI system
R = 400 m
d = 1 mile (1609 m / 1 mile) = 1609 m
L = 2 pi R
L = 2 pi 400
L = 2513 m
Let us form a rule of proportions if 2 turns of Julian is 3 turns Joshua, for 1 turn of Joshua how many turns Julian took
lap Julian = 2/3 turn Joshua
Let's calculate what distance is the same for both of them since they are on the same track
1 lap = 2513 m
d. Julian = 2/3 2513 m
d Julian = 1675 m distance Joshua
Let us form the last rule of three or proportions if 1609 m you travel in 12 min how long it takes to travel 1675 m
t Julian = 1675/1609 12
t = 12.5 s
Since this is the distance Joshua travels, this is the time Joshua travels 1 mile