Answer:
Explanation:
a ) Between r = 0 and r = r₁
Electric field will be zero . It is so because no charge lies in between r = 0 and r = r₁ .
b ) From r = r₁ to r = r₂
At distance r , charge contained in the sphere of radius r
volume charge density x 4/3 π r³
q = Q x r³ / R³
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q x r³ / ε₀R³
E= Q x r / (4πε₀R³)
E ∝ r .
c )
Outside of r = r₂
charge contained in the sphere of radius r = Q
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q / ε₀
E = Q / 4πε₀r²
E ∝ 1 / r² .
Answer: Improvement Invention means any CCIA Invention and CCIA's rights as a joint owner in a Joint Invention that is sufficiently different from the scope of a Licensed Patent to be separately patentable, and covered by the claims of Licensed Patents.
This question doesn't appear to be complete
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
measure the position every so often with a stopwatch
Explanation:
A possible method of measurement is to place a measuring tape along the path and measure the position every so often with a stopwatch, with this we can make a graph of position against time and by extrapolation find the initial velocity.
This is a method used in measurements of uniform movements of bodies