<span>The answer is 7. Seven is a prime number, which means that its multiples are 1 and itself (7): 7 = 1 * 7. To find out which one is a factor of 7, we should divide each of them by 7. 1/7 will be a decimal number and 7/7 = 1, which is a whole number. Thus, 7 will be a multiple of 7 and also a factor of 7.Hope this helps. Let me know if you need additional help!</span>
5x-13=15+7x
-13=15+2x
-28=2x
-14=x
The normal distribution is also known as the Gaussian distribution. The percentage of all possible values of the variable that are less than 4 is 15.87%.
<h3>What is a normal distribution?</h3>
The normal distribution, also known as the Gaussian distribution, is a symmetric probability distribution about the mean, indicating that data near the mean occur more frequently than data distant from the mean. The normal distribution will show as a bell curve on a graph.
A.) The percentage of all possible values of the variable that lie between 5 and 9.
P(5<X<9) = P(X<9) - P(5<X)
= P(z<1.5) - P(-0.5<z)
= 0.9332 - 0.3085
= 0.6247
= 62.47%
B.) The percentage of all possible values of the variable that exceed 1.
P(X>1) = 1 - P(X<-2.5)
= 1-0.0062
= 0.9938
= 99.38%
C.) The percentage of all possible values of the variable that are less than 4.
P(X<4) = P(X <4)
= P(z<-1)
= 0.1587
= 15.87%
Learn more about Normal Distribution:
brainly.com/question/15103234
#SPJ1
Answer:

Step-by-step explanation:
The opposite angles in a quadrilateral theorem states that when a quadrilateral is inscribed in a circle, the angles that are opposite each other are supplementary, their degree measures add up to 180 degrees. One can apply this here by using the sum of (<C) and (<A) to find the measure of the parameter (z). Then one can substitute in the value of (z) to find the measure of (<B). Finally, one can use the opposite angles in a quadrilateral theorem to find the measure of angle (<D) by using the sum of (<B) and (D).
Use the opposite angles in an inscribed quadrialteral theorem,
<A + <C = 180
Substitute,
14x - 7 + 8z = 180
Simplify,
22z - 7 = 180
Inverse operations,
22z = 187
z = 
Simplify,
z = 
Now substitute the value of (z) into the expression given for the measure of angle (<B)
<B = 10z
<B = 10(
)
Simplify,
<B = 85
Use the opposite angles in an inscribed quadrilateral theorem to find the measure of (<D)
<B + <D = 180
Substitute,
85 + <D = 180
Inverse operations,
<D = 95