Chemical formula of the glucose: C₆H₁₂O₆
We calculate the molar mass:
atomic mass (C)=12 u
atomic mass (H)=1 u
atomic mass (O)=16 u
atomic weight (C₆H₁₂O₆)=6(12 u)+12(1u)+6(16 u)=72 u+12u+96 u=180 u.
Therefore : 1 mol of glucose will be 180 g
The molar mass would be: 180 g/ mol
2) we calculate the number of moles of 1.5 g.
180 g---------------------1 mol
1.5 g---------------------- x
x=(1.5 g * 1 mol) / 180 g≈8.33*10⁻³ moles
we knows that:
1 mol = 6.022 * 10²³ particles (atoms or molecules)
3)We calculate the number of molecules:
Therefore:
1 mol-----------------------6.022*10²³ molecules of glucose
8.33*10⁻³ moles-------- x
x=(8.33*10⁻³ moles * 6.022*10²³ molecules)/1 mol≈5.0183*10²¹ molecules.
4)We calculate the number of C, H and O atoms:
A molecule of glucose have 6 atoms of C, 12 atoms of H, and 6 atoms of O,
number of atoms of C=(6 atoms/1 molecule)(5.0183*10²¹molecules)≈
3.011*10²²
number of atoms of H=(12 atoms/1 molecule)(5.0183*10²¹ molecules)≈
6.022*10²² .
number of atoms of O=(6 atoms/1 molecule)(5.0183*10²¹ molecules)≈
3.011*10²²
Answer: we have 3.011*10²² atoms of C, 6.022*10²² atoms of H, and 3.011*10²² atoms of O.
Answer:
600 mg
Explanation:
The initial amount of the drug = 200 mg
The half-life of the drug = 8 hrs
It means that:-
After 6 hours, the concentration becomes :-
mg
After 12 hours, the concentration becomes :-
mg
After 18 hours, the concentration becomes :-
mg
And so on...
Thus,
After infinite time = 
Thus,
After infinite time = 
The sum of the infinite series is:-
= 
So,
<u>After infinite time =
mg = 600 mg</u>
Balance Chemical equation is as follow,
<span> 3 H</span>₂ <span>(g) + N</span>₂ <span>(g) </span>→<span> 2 NH</span>₃ <span>(g)
According to balanced equation, 3 Molecules (3 moles) of Hydrogen reacts with 1 Molecule of N</span>₂ to produce 2 moles (2 Molecules) of NH₃.
Result:
2 Molecules of Ammonia are produced by reacting 3 molecules of Hydrogen and 1 molecule of Nitrogen.
NaHCO3 is a product of a strong base and a weak acid reaction. Thus it has weak basic properties.
HCO3- ion is actually amphoteric, which means it can act as a base or an acid. But it is weaker than a strong acid or a strong base.
<span>HCO3- is amphoteric meaning it acts both as a B.L. Acid and a B.L. Base.. which is why it's used to neutralize both acid and base spills in the lab.</span>
Fifty percent. plz brainliest my answer