1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
11

Three forms of radiation are also called ionizing radiation

Chemistry
1 answer:
Trava [24]3 years ago
8 0

Answer:

Alpha Particle, Beta Particles and Gamma Rays

Explanation:

You might be interested in
Rank the following solutes in order of increasing entropy when 0.0100 moles of each dissolve in 1.00 liter of water.
sergeinik [125]

Answer:

CH3OH, NaBr, CaCl2, Cr(NO3)3

Based on disorderliness, the ionization strength gives the entropy.

CH3OH - Does not ionize, it's a solvent

NaBr- Ionizes intwo two ions

CaCl2- Ionizes to three ions 1Ca and 2 Cl ions

Cr(NO3)3- Ionizes to four ions

Explanation:

Here is the complete question:.

Rank the following solutes in order of increasing entropy when 0.0100 moles of each dissolve in 1.00 liter of water.

CaCl2, CH3OH, Cr(NO3)3, NaBr

8 0
3 years ago
If a photon dropping from the n = 7 to the n = 1 level hit the surface of Au, what would be the wavelength of the ejected electr
Alex787 [66]

Answer:

here's the answer.hope it helps

5 0
3 years ago
In terms of newtons 3rd law of motion desribe this picture.
KIM [24]
Newton's third law (for every action, there is an equal and opposite reaction) means that in every interaction (in this case, that of the objects in the image), there is a pair of forces acting on the two interacting objects. <span>When you sit on a chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body. There are two forces resulting from this interaction - a force on the chair and a force on your body. This is embodied in the image by the two objects exerting force on each other (indicated by the arrows).</span><span>

Hope this helps.</span>
5 0
3 years ago
According to kinetic molecular theory, which of the following would not be considered an ideal gas
RideAnS [48]

Answer:

A gas at very low volumes, when gas particles are very close together

A gas at very low temperatures, when gas particles have very little kinetic energy

A gas with highly polar molecules that have very strong inter-molecular forces

Explanation:

The Kinetic Molecular Theory:

  • particles in a gas are in constant, random motion
  • combined volume of the particles is negligible
  • particles exert no forces on one another
  • any collisions between the particles are completely elastic
  • average kinetic energy of the particles is proportional to the temperature in kelvins

RM / NV / NF / EC / ET

Although none of the assumptions provided in the molecular theory of gases are strictly correct, they are fair enough for modeling some systems. It is an idealized approach of real systems. The fundamental presumptions are nearly identical to those of an ideal gas.

The most logical of the hypotheses is that of elastic collisions. Since gas molecules are treated as perfectly hard spheres in Newton's equations and elastic collisions, there is no energy lost in compressing the gas molecules during a collision.

For bulk, light gases at moderate temperatures and low to moderate pressures, it is acceptable to assume that there is an attractive force between the gas and the container wall. Since the walls of the containers only account for a minor portion of collisions in macroscopic quantities, they can typically be disregarded. Only until the gas's total density exceeds the kinetic energy do forces between its particles start to become significant. For light gases like He and straightforward diatomic gases, the kinetic energy of the gas molecules far outweighs the intramolecular interactions at normal temperatures.

But in a complete way of the KM theory being described:

The microscopic characteristics of atoms (or molecules) and their interactions, which result in observable macroscopic qualities, are described by the kinetic molecular theory of matter (such as pressure, volume, temperature). The idea may be used to explain why matter exists in distinct phases (solid, liquid, and gas), as well as how matter can transform between these phases.

The three states of matter are: As we transition from the solid to the gaseous phase, you'll notice that the distance between atoms or molecules widens.

According to the kinetic molecular theory of matter,

  • Particles that make up matter are continually moving.
  • Every particle has energy, however the amount of energy changes with the temperature of the sample of matter. Thus, whether the material is in a solid, liquid, or gaseous form is determined. The least energetic molecules are those in the solid phase, whereas the most energetic particles are those in the gas phase.
  • The average kinetic energy of the particles in a material may be calculated from its temperature.
  • When the particles' energies are altered, the phase of the particles may vary.
  • Matter atoms are separated by gaps. As a sample of matter transitions from the solid to the liquid and gas phases, the average amount of vacant space between molecules increases.
  • Atoms and molecules interact by attraction forces, which intensify as the particles draw closer to one another. Intermolecular forces are the name for these pulling forces.
<h2>How does kinetic molecular theory affect gases?</h2>

According to the Kinetic Molecular Theory, gas particles collide in an elastic manner and are always in motion. Only absolute temperature directly affects a group of gas particle's average kinetic energy.

Part I of How the Kinetic-Molecular Theory Explains Gas Behavior.

If the volume is kept constant, the faster gas molecules collide with the container walls more frequently and more violently, raising the pressure according to Charles' law.

6 0
2 years ago
Read 2 more answers
How many atoms are there in 1 g of argon?
amm1812

Answer:

1.5057×10^22 atom

Explanation:

As we

1 mole of argon = 40 g of argon

i.e 40 g of argon = 1 mole of argon

1 g of argon = 1/40 mole of argon

1 mole of argon = 6.023×10^23 atom of argon

1/40 mole if argon = 1/40 ×6.023×10^23

= 1.5057×10^22

7 0
3 years ago
Other questions:
  • Select the correct answer.
    8·2 answers
  • What is the term for a bond composed of two electron pairs shared between two atoms? double bond triple bond electrovalent bond
    13·1 answer
  • The formula actual yield / theoretical yield is used to calculate the ____ yield of a reaction.
    11·2 answers
  • The relationship between molecular velocities and temperature is a ___relationship.
    9·2 answers
  • Professionals in a scientific laboratory and in the healthcare field need to accurately prepare solutions for a number of reason
    10·1 answer
  • Convert the Following<br><br> 10 hm to cm
    12·1 answer
  • A sample of gas contains NO, NO2, and N2O. The pressure of the gas mixture is 4.68 atm. The pressure of NO is 501.6 mm Hg, where
    15·1 answer
  • Oxygen Molecules taken in per breath: The Athletes result will be?
    14·1 answer
  • Which of the following statements is true?
    14·1 answer
  • How can the properties of a substance be used to identify it?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!