A liter is 0.264 gallons so 13 * 0.264 = 3.432 and round it up it is 3.4
Answer:

Step-by-step explanation:

Answer:
The length of the park is 175 feet
Step-by-step explanation:
Let us solve the question
∵ The perimeter of a rectangular park is 500 feet
∵ The formula of the perimeter of the rectangle is P = 2(L + W)
∵ L is the length and W is the width
→ Equate the rule of the perimeter by 500
∴ 2(L + W) = 500
→ Divide both sides by 2
∴ L + W = 250 ⇒ (1)
∵ The length of the park is 100 feet longer than the width
→ That means L is W plus 100
∴ L = W + 100 ⇒ (2)
→ Substitute L in (1) by (2)
∵ W + 100 + W = 250
→ Add the like terms
∵ (W + W) + 100 = 250
∴ 2W + 100 = 250
→ Subtract 100 from both sides
∵ 2W + 100 - 100 = 250 - 100
∴ 2W = 150
→ Divide both sides by 2
∴ W = 75
→ Substitute the value of W in (2) to find L
∵ L = 75 + 100 = 175
∴ The length of the park is 175 feet
Answer:
randomly requiring half the drivers to drive with sunglasses and the other half to drive without sunglasses.
Step-by-step explanation:
When employing an independent group design in a research or experimental study, the different groups in the study are assigned entirely different subjects such that, subjects in the treatment group are different from those in the control group. Therfore, adopting an independent group design in the scenario described above means diving the subjects into two at random with one half driving with sunglasses and the other half having to drive without it.
Hey there,
To solve this problem, let us first define what is mean and median. Mean is the average of all the numbers in the data set while the median is the number in the middle of the data set in ascending order. If we create a box plot for the data of Rome and New York, we can see that there is an outlier in the data for New York. Since New York has an outlier, so the mean is not a good representation on the central tendency of the data. The mean is skewed (distorted) by the outlier. So in this case it is better to use the median. While the Rome data is nice and symmetrical, it does not seem to have an outlier, so we can use the mean for this data set.
Therefore the answer is:
The Rome data center is best described by the mean. The New York data center is best described by the median
Hoped I Helped