1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
10

Please help me i am completly lost

Mathematics
1 answer:
VMariaS [17]3 years ago
6 0
Number 14 is this < (20:30)
You might be interested in
(d). Use an appropriate technique to find the derivative of the following functions:
natima [27]

(i) I would first suggest writing this function as a product of the functions,

\displaystyle y = fgh = (4+3x^2)^{1/2} (x^2+1)^{-1/3} \pi^x

then apply the product rule. Hopefully it's clear which function each of f, g, and h refer to.

We then have, using the power and chain rules,

\displaystyle \frac{df}{dx} = \frac12 (4+3x^2)^{-1/2} \cdot 6x = \frac{3x}{(4+3x^2)^{1/2}}

\displaystyle \frac{dg}{dx} = -\frac13 (x^2+1)^{-4/3} \cdot 2x = -\frac{2x}{3(x^2+1)^{4/3}}

For the third function, we first rewrite in terms of the logarithmic and the exponential functions,

h = \pi^x = e^{\ln(\pi^x)} = e^{\ln(\pi)x}

Then by the chain rule,

\displaystyle \frac{dh}{dx} = e^{\ln(\pi)x} \cdot \ln(\pi) = \ln(\pi) \pi^x

By the product rule, we have

\displaystyle \frac{dy}{dx} = \frac{df}{dx}gh + f\frac{dg}{dx}h + fg\frac{dh}{dx}

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} (x^2+1)^{-1/3} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} (x^2+1)^{-1/3} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \frac{3x}{(4+3x^2)^{1/2}} \frac{1}{(x^2+1)^{1/3}} \pi^x - (4+3x^2)^{1/2} \frac{2x}{3(x^2+1)^{4/3}} \pi^x + (4+3x^2)^{1/2} \frac{1}{ (x^2+1)^{1/3}} \ln(\pi) \pi^x

\displaystyle \frac{dy}{dx} = \boxed{\frac{\pi^x}{(4+3x^2)^{1/2} (x^2+1)^{1/3}} \left( 3x - \frac{2x(4+3x^2)}{3(x^2+1)} + (4+3x^2)\ln(\pi)\right)}

You could simplify this further if you like.

In Mathematica, you can confirm this by running

D[(4+3x^2)^(1/2) (x^2+1)^(-1/3) Pi^x, x]

The immediate result likely won't match up with what we found earlier, so you could try getting a result that more closely resembles it by following up with Simplify or FullSimplify, as in

FullSimplify[%]

(% refers to the last output)

If it still doesn't match, you can try running

Reduce[<our result> == %, {}]

and if our answer is indeed correct, this will return True. (I don't have access to M at the moment, so I can't check for myself.)

(ii) Given

\displaystyle \frac{xy^3}{1+\sec(y)} = e^{xy}

differentiating both sides with respect to x by the quotient and chain rules, taking y = y(x), gives

\displaystyle \frac{(1+\sec(y))\left(y^3+3xy^2 \frac{dy}{dx}\right) - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = e^{xy} \left(y + x\frac{dy}{dx}\right)

\displaystyle \frac{y^3(1+\sec(y)) + 3xy^2(1+\sec(y)) \frac{dy}{dx} - xy^3\sec(y)\tan(y) \frac{dy}{dx}}{(1+\sec(y))^2} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \frac{y^3}{1+\sec(y)} + \frac{3xy^2}{1+\sec(y)} \frac{dy}{dx} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} \frac{dy}{dx} = ye^{xy} + xe^{xy}\frac{dy}{dx}

\displaystyle \left(\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}\right) \frac{dy}{dx}= ye^{xy} - \frac{y^3}{1+\sec(y)}

\displaystyle \frac{dy}{dx}= \frac{ye^{xy} - \frac{y^3}{1+\sec(y)}}{\frac{3xy^2}{1+\sec(y)} - \frac{xy^3\sec(y)\tan(y)}{(1+\sec(y))^2} - xe^{xy}}

which could be simplified further if you wish.

In M, off the top of my head I would suggest verifying this solution by

Solve[D[x*y[x]^3/(1 + Sec[y[x]]) == E^(x*y[x]), x], y'[x]]

but I'm not entirely sure that will work. If you're using version 12 or older (you can check by running $Version), you can use a ResourceFunction,

ResourceFunction["ImplicitD"][<our equation>, x]

but I'm not completely confident that I have the right syntax, so you might want to consult the documentation.

3 0
2 years ago
WILL MARK BRAINLYEST PLEASE HELP!!!
frez [133]
63x+ 82y-15x - 36y
= 48x + 46y

answer
C. 48x + 46y
5 0
3 years ago
How do you turn a ratio into a percentage number
lilavasa [31]
To convert a ratio to a percentage you have to divide then multiply by 100!
Hope this helps
3 0
3 years ago
Pls help i really really need it!! i'm really tiered and would appreciate your help. :)
Pani-rosa [81]

Answer:

i suck at math

Step-by-step explanation:

3 0
3 years ago
Please help me ASAP PleSe
wolverine [178]
-18 i dont really know but
4 0
3 years ago
Other questions:
  • If the sun of a number is tripled, the result is nine less than twice the number. Find the number
    10·1 answer
  • Write an expression to represent the area of a rectangle if the length of a rectangle is three units more than its width
    6·1 answer
  • *need help asap!*
    14·1 answer
  • 0.506 rounded to the nearest hundredth
    6·2 answers
  • Explain how finding 7×20 is simply letter to finding 7×2000 then find each product.
    7·1 answer
  • X^2-2x-35=0 solutions​
    6·1 answer
  • From a horizontal distance of 80m, the angle of elevation to the top of a flagpole is 180. Calculate the height of the flagpole.
    14·1 answer
  • PLZZ HELP ME WITH THIS
    8·1 answer
  • Geometry help please. Complete the similarity statement, in the box below, of these two triangles.
    6·1 answer
  • I need help with Geometry
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!