I believe the answer is 1.2
You can start by looking at the mode of the set of number automatically b and d are eliminated. We then proceed to calculate the mean so add all the numbers in A so it’ll be, 52 then divide by the amount of numbers in the set so 6. 52/6 =8.6
And C ends up being 48 so 48/6 = 8
Therefore your answer is C
<span>, y+2 = (x^2/2) - 2sin(y)
so we are taking the derivative y in respect to x so we have
dy/dx use chain rule on y
so y' = 2x/2 - 2cos(y)*y'
</span><span>Now rearrange it to solve for y'
y' = 2x/2 - 2cos(y)*y'
0 = x - 2cos(y)y' - y'
- x = 2cos(y)y' - y'
-x = y'(2cos(y) - 1)
-x/(2cos(y) - 1) = y'
</span><span>we know when f(2) = 0 so thus y = 0
so when
f'(2) = -2/(2cos(0)-1)
</span><span>2/2 = 1
</span><span>f'(2) = -2/(2cos(0)-1)
cos(0) = 1
thus
f'(2) = -2/(2(1)-1)
= -2/-1
= 2
f'(2) = 2
</span>
Answer:
(1/4)*(e⁶ - 7)
Step-by-step explanation:
a) Given
x − y = 0 if x = 0 ⇒ y = 0
x − y = 2 if x = 0 ⇒ y = -2; if y = 0 ⇒ x = 2
x + y = 0 if x = 0 ⇒ y = 0
x + y = 3 if x = 0 ⇒ y = 3; if y = 0 ⇒ x = 3
then we show the region R in the pics 1 and 2.
b) We make the change of variables as follows
u = x + y
v= x - y
If
x - y = 0 ⇒ v = 0
x − y = 2 ⇒ v = 2
x + y = 0 ⇒ u = 0
x + y = 3 ⇒ u = 3
Where u is the horizontal axis and v is the vertical axis, the new region S is shown in the pic 3.
c) We evaluate ∫∫R (x + y)*e∧(x² - y²)dA
The procedure is shown in the pic 4, where we have to calculate the Jacobian in order to use it to get the answer.