NOTES: To find the intercepts/roots:
- move everything to one side and 0 on the other
- factor the equation
- apply the Zero Product Property (set each factor equal to 0)
- solve for x
11. Answer: x = {-4, 0, 5}
<u>Step-by-step explanation:</u>

***********************************************************************************
12. Answer: x = No real solution
<u>Step-by-step explanation:</u>

***********************************************************************************
13. Answer: x = {-2, 2}
<u>Step-by-step explanation:</u>

***********************************************************************************
14. Answer: 
<u>Step-by-step explanation:</u>

***********************************************************************************
15. Answer: 
<u>Step-by-step explanation:</u>
