The maximum amount of XeF4 that could be produced is 0.5 moles.
XeF4 = Xe (g) 2 F2 (g) (g)
Xe and F2 have a mole ratio of 1:2. Because of this, the reaction would be limited by F2 when there is 1 mole of Xe and 1 mole of F2.
<h3>What is mole ratio?</h3>
The mole ratio is the ratio of any two compounds' mole amounts that are present in a balanced chemical reaction.
A comparison of the ratios of the molecules required to accomplish the reaction is given by the balancing chemical equation.
A mole ratio is a conversion factor used in chemical reactions to link the mole quantities of any two compounds. A conversion factor's numbers are derived from the balanced chemical equation's coefficients.
To learn more about mole ratio from the given link:
brainly.com/question/14425689
#SPJ4
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
The answer:
for the monoatomic <span>selenium ions
</span> -the ion charge of selenium is 2-, so the answer is [Se]2+
as for the monoatomic phosphorus ions
-the ion charge of phosphorus is 3-, so the answer is [P]3-
Answer:
you never know but manifestation never hurts.