Answer:
The position of an equilibrium always shifts in such a direction as to relieve a stress applied to the system -Le Chåtelier's principle
A molecule that donates a proton when it encounters a proton acceptor.- Bronsted-Lowry acid
Occurs when a reaction involving an acid and its conjugate base is combined with a second reaction involving a base and its conjugate acid.- Neutralization
It ionizes completely when dissolved in water.- Strong acid
The shift in the position of equilibrium caused by the addition of a participating ion.- Common ion effect
It only partially ionizes when dissolved in water.- Weak electrolyte
It is capable of acting as either an acid or a base depending upon the solute- Amphoteric solvent
The act of self-ionization of a solvent to produce both a conjugate acid and a conjugate base.- Auto-protolysis
A chemical species that bears both positive and negative charges.- Zwitterion
Explanation:
In the answer box we have various chemical terminologies and their definitions. In answering the question, you must carefully read through each definition, then check what option best matches that definition from the options provided.
Each definition applies only to one terminology as you can see in the answer above.
Answer:
The answer to your question is 7.4 moles of Aluminum
Explanation:
Data
moles of Al = ?
moles of Al₂O₃ = 3.7
Balanced chemical reaction
4 Al + 3 O₂ ⇒ 2 Al₂O₃
To solve this problem use proportions and cross multiplication. Use the coefficients of the balanced chemical equation.
4 moles of Aluminum ----------------- 2 moles of Al₂O₃
x ----------------- 3.7 moles of Al₂O₃
x = (3.7 x 4) / 2
x = 14.8 / 2
x = 7.4 moles of Aluminum
The answer for this is 26.6°c
Answer:
The correct option is: Br₂--------->2 Br(g)
Explanation:
Bond dissociation is a process in which energy is applied to break a chemical bond between the atoms of a molecule to give free atoms.
In the given reaction: Br₂-------->2 Br(g)
The covalent bond in Br₂ molecule dissociates to give two moles of bromine atoms. Therefore, it is a bond dissociation reaction.
When you inhale, air passes through the nasal cavity. There, mucus and hairs clean the air from most foreign particles before entering the body. Then, the air passes from the nasal cavity to the pharynx. After the pharynx, it passes through the larynx reaching the trachea. After passing through the trachea, the air reaches the bronchi, and after the bronchi, the bronchioles that branch off the bronchi. From the bronchioles, the air reaches the alveoli that is when gas exchange happens. O2 enters and CO2 leaves.