To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters. Note that the volume is in liters of solution and not liters of solvent. When a molarity is reported, the unit is the symbol M and is read as “molar”.
I hope this helped :)
Please make me the branliest! Have a good night/ good day!!
Answer:
they are equal.
Explanation:
1 mol = 6.022 × 10^23 (Avogadro's constant), which is the number of atoms in 1 mol of any element. Doesn't matter what their atomic mass is, although, of course, 1 mol of carbon weighs less than 1 mol of calcium, but its because their mass is different, but the point is, in 1 mol of any element there is 6.03*10^23 atoms
This is like saying, what weighs more, 10 kg of feathers or 10 kg of metal
Answer:
Hello - this is Mrs. Gussman, your chemistry teacher. I wrote this exam question and posting it online is a violation of the academic integrity policy. Remove this post immediately.
Explanation:
The graph is not given in the question, so, the required graph is attached below:
Answer:
According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.
The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.
<span>It is known
that acids compounds contains hydrogen and produces hydrogen ion in water. A binary
acid however is an acid that have two elements, one of the element has a
hydrogen attached to it. Examples of binary acids are hydrogen fluoride (HF),
hydrogen bromide (HBr) and hydrogen sulfide (H2S). In naming a binary acid, it
has two rules; one, as pure compounds and two, as acid solutions. For pure
compounds, start with the name ‘hydrogen’ and end the anion name with ‘-ide’. For
acidic compounds, start with ‘hydro-‘, end the anion with ‘-ic’ and add ‘acid’.</span>