Answer:
Competition occurs when <em>(A) two or more organisms need the same resource.</em>
Explanation:
I dont think it could be (B), (C) or (D) because those don't really make sense.
FALSE
Organisms may play only one role in an ecosystem. ... Each of the organisms in an ecosystem fills the energy role of producer, consumer, or decomposer.
~~~~iln~~~~~~
Answer:
Explanation:
Hello!
In this case, since the molarity is defined as moles of solute divided by liters of solution, since we have phenol with a molar mass of 94.12 g/mol, we can first compute the moles in 1.5 g of phenol:
Next, since 1000 mL = 1 L, we notice that the volume of the solution is 0.100 L and therefore, the molarity of such solution turns out:
Best regards!
0.000001ppm
Explanation:
Mass of fluoride = 500g
Volume of water = 500000liters
Unknown:
Parts per million of fluoride = ?
Solution:
The parts per million is the amount of solute in milligram dissolved in a liter of water or milligram per kilogram of solvent
It is a unit used to express very small concentration.
we need to convert g - mg
500g = 500 x 10⁻³mg = 0.5mg
Concentration in parts per million =
Concentration in parts per million = = 0.000001ppm
learn more:
Parts per million brainly.com/question/2854033
#learnwithBrainly
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation: