Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
Before the bullet is fired the momentum is Zero because nothing is moving but once the bullet is shot the momentum increases because of the movement of the bullet moving forward.
Answer: 4.41 atm
Explanation:
Given that,
Original pressure of oxygen gas (P1) = 5.00 atm
Original temperature of oxygen gas (T1) = 25°C
[Convert 25°C to Kelvin by adding 273
25°C + 273 = 298K
New pressure of oxygen gas (P2) = ?
New temperature of oxygen gas (T2) = -10°C
[Convert -10°C to Kelvin by adding 273
-10°C + 273 = 263K
Since pressure and temperature are given while volume is held constant, apply the formula for Charle's law
P1/T1 = P2/T2
5.00 atm /298K = P2/263K
To get the value of P2, cross multiply
5.00 atm x 263K = 298K x V2
1315 atm•K = 298K•V2
V2 = 1315 atm•K / 298K
V2 = 4.41 atm
Thus, the new pressure inside the canister is 4.41 atmosphere
Answer:
in monoculture farming , we produce a single species of a livestock or plant in large quantity.
Even though it is very effective, producing a mass number of a single organism in an Area will risk of endangering the existence of a specific nutrient ( because that large number of organism is basically eating the same thing)
which lead to societal decision such as the founding of The Livestock conservancy, or other environmental protection organization
Explanation: