Answer:
20 molecules of oxygen gas remains after the reaction.
Explanation:
Molecules of ethyne = 52
Molecules of oxygen gas = 150
According to reaction, 2 molecules of ethyne reacts with 5 molecules of oxygen gas.
Then 52 molecules of ethyne will react with:
of oxygen gas.
As we can see that we have 150 molecules of oxygen gas, but 52 molecules of ethyne will react with 130 molecules of oxygen gas. So, this means that ethyne is a limiting reagent and oxygen gas is an excessive reagent.
Remaining molecules of recessive reagent = 150 - 130 = 20
20 molecules of oxygen gas remains after the reaction.
Answer:
how can I solve this ?4Al+3O2 produce 2Al2O3 find a) oxygen atoms needed to react with 5.4 g of aluminium b) grams of oxygen needed to react with 0.6 mol of aluminium?
(A) n=m/M,
n(Al)=5.4/27=0.2 moles
n(O2)=n(Al)*3/4=0.2*3/4=0.15 moles
Number of oxygen atoms= n(O2)*Avogadro's number
=0.15*6.02*10^23=9.03*10^22 oxgyen atoms
(B)
n=m/M
n(Al)=0.6/27=0.02222 moles
n(O2)=n(Al)*3/4=0.016666 moles
m=n*M
m(O2)=0.0166666*32=0.53333 grams
The rate law for this reaction is [A]².
Balanced chemical reaction used in this experiment: A + B → P
The reaction rate is the speed at which reactants are converted into products.
Comparing first and second experiment, there is no change in initial rate. The concentration of reactant B is increased by double. Initial rate does not depands on concentration of reactant B.
Comparing first and third experiment, initial rate is nine times greater, while concentration of reactant A is three times greater. Conclusion is that concentration of reactant A is squared and the rate is [A]².
More info about rate law: brainly.com/question/16981791
#SPJ4
Answer: The answer is C. The reaction system absorbs 22 kJ of energy from the surroundings.
Explanation: I just took the quiz and it said I got it right.
We can skip option B and D because NaCl is salt and H₂SO₄ is a strong acid.
Neutralization reactions are those reactions in which acid and base react to form salt and water.
As water being amphoteric in nature can react with HCl as follow,
HCl + H₂O ⇆ H₃O⁺ + OH⁻
In this case no salt is formed, so we can skip this option.
Ammonia being a weak base can abstract proton from HCl as follow,
HCl + NH₃ → NH₄Cl
Ammonium Chloride is a salt. So, among all four options, Option-C is the correct answer.