1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
14

Which biom ha hot days, cool nights, and very few plants

Physics
1 answer:
alekssr [168]3 years ago
5 0
A.Desert hope this helps
You might be interested in
Use the information to answer the following question.
Nostrana [21]

Answer:

The answer is B. :)

Explanation:

5 0
2 years ago
A 4.80 −kg ball is dropped from a height of 15.0 m above one end of a uniform bar that pivots at its center. The bar has mass 7.
Margarita [4]

Answer:

h = 13.3 m

Explanation:

Given:-

- The mass of ball, mb = 4.80 kg

- The mass of bar, ml = 7.0 kg

- The height from which ball dropped, H = 15.0 m

- The length of bar, L = 6.0 m

- The mass at other end of bar, mo = 5.10 kg

Find:-

The dropped ball sticks to the bar after the collision.How high will the other ball go after the collision?

Solution:-

- Consider the three masses ( 2 balls and bar ) as a system. There are no extra unbalanced forces acting on this system. We can isolate the system and apply the principle of conservation of angular momentum. The axis at the center of the bar:

- The angular momentum for ball dropped before collision ( M1 ):

                                 M1 = mb*vb*(L/2)

Where, vb is the speed of the ball on impact:

- The speed of the ball at the point of collision can be determined by using the principle of conservation of energy:

                                  ΔP.E = ΔK.E

                                  mb*g*H = 0.5*mb*vb^2

                                  vb = √2*g*H

                                  vb = ( 2*9.81*15 ) ^0.5

                                  vb = 17.15517 m/s

- The angular momentum of system before collision is:

                                  M1 = ( 4.80 ) * ( 17.15517 ) * ( 6/2)

                                  M1 = 247.034448 kgm^2 /s

- After collision, the momentum is transferred to the other ball. The momentum after collision is:

                                  M2 = mo*vo*(L/2)

- From principle of conservation of angular momentum the initial and final angular momentum remains the same.

                                 M1 = M2

                                 vo = 247.03448 / (5.10*3)

                                 vo = 16.14604 m/s

- The speed of the other ball after collision is (vo), the maximum height can be determined by using the principle of conservation of energy:

                                  ΔP.E = ΔK.E

                                  mo*g*h = 0.5*mo*vo^2

                                  h = vo^2 / 2*g

                                  h = 16.14604^2 / 2*(9.81)

                                  h = 13.3 m

3 0
3 years ago
What is the magnitude of the torque about his shoulder due to the weight of the ball and his arm if he holds his arm straight ou
Lubov Fominskaja [6]

Answer:

The torque about his shoulder is 34.3Nm.

The solution approach assumes that the weight of the boy's arm acts at the center of the boy's arm length 35cm from the shoulder.

Explanation:

The solution to the problem can be found in the attachment below.

6 0
3 years ago
The energy flow per unit time per unit area (S) of an electromagnetic wave has an average value of 310 mW/m2. The maximum value
Aleksandr-060686 [28]

Answer:

5.096*10^-8

Explanation:

Given that

The average value of the electromagnetic wave is 310 mW/m²

To find the maximum value of the magnetic field the wave is closest to, we say

Emax = √Erms

Emax = √[(2 * 0.310 * 3*10^8 * 4π*10^-7)]

Emax = √233.7648

Emax = 15.289

Now, with our value of maximum electromagnetic wave gotten, we divide it by speed of light to get our final answer

15.289 / (3*10^8) = 5.096*10^-8 T

Suffice to say, The maximum value of the magnetic field in the wave is closest to 5.096*10^-8

6 0
2 years ago
If a substance conducts heat easily, it is considered to be agood insulator.bad substance.good conductor.poor conductor.
NARA [144]
If a Substance conducts heat easily then it is considered a good conductor, since the electrons can move freely within the substance.
7 0
3 years ago
Read 2 more answers
Other questions:
  • NEED HELP ASAP Carlos is analyzing the results of a recent scientific study about gravity. Scientists recorded that the experime
    13·1 answer
  • What is most likely to happen to light that hits an opaque object?
    7·1 answer
  • Assume that charge −q is placed on the top plate, and +q is placed on the bottom plate of a parallel plate capacitor. What is th
    11·1 answer
  • What adaptation in frogs enables them to swim​
    13·2 answers
  • A car traveling at 22 m/s comes to an abrupt halt in 0.1 second when it hits a tree. What is the deceleration in meters per seco
    12·1 answer
  • Introduction to conductors and insulators and electrification processes. Please
    12·1 answer
  • Reggie accidentally left his books on top of his car before he left for class. The books stayed on top of his car while he was d
    5·1 answer
  • I really need help, whats 2+2
    8·1 answer
  • This is the given equation of vibration of
    15·1 answer
  •  A baseball is thrown at a speed of Vo at an angle of elevation θ. Determine its range (R) in terms of Vo and θ.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!