Answer:
In regards to the global energy budget, Earth absorbs <u>short-</u><u>wave</u> radiation and emits <u>long-</u><u>wave</u> radiation.
Explanation:
It is required to tell what kind of wave radiation the earth absorbs and emits in regards to the global energy budget.
Let us discuss the global energy budget first.
The balance between the solar energy that enters Earth and the energy that leaves Earth and travels back into space is known as the global energy budget or the earth's energy budget. The visible region of the electromagnetic spectrum is where the majority of the sun's energy is found.
Therefore earth absorbs <u>short-</u><u>wave</u> radiation and emits <u>long-</u><u>wave </u>radiation in regard to the global energy budget.
To know more about, the global energy budget, refer to:
brainly.com/question/4352906
#SPJ4
Question is missing. Found on google:
<em>"Part A What is the acceleration of the ball? Express your answer to two significant figures and include the appropriate units. </em>
<em>Part B
</em>
<em>What is the net force on the ball during the hit? </em>
<em>Express your answer to two significant figures and include the appropriate units."</em>
Solution:
A) 
The acceleration of the ball is given by

where
v = 12 m/s is the final velocity
u = 0 is the initial velocity (the ball is stationary)
t = 2.0 ms = 0.002 s is the time of contact
Substituting,

B) 
The force on the ball can be found by using Newton's second law:

where
m = 140 g = 0.14 kg is the mass of the ball
is the acceleration
Substituting,

Answer:
I cannot do the laws of physics cuz I hate science but I'm just dance
Explanation:
<u>it's</u><u> it's true</u>
Yes! with out the sun plants and animals wouldnt live right? therefore they get energey wich is passed on by food
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately