Answer:
v = 4.18 m/s
Explanation:
given,
frequency of the alarm = 872.10 Hz
after passing car frequency she hear = 851.10 Hz
Speed of sound = 343 m/s
speed of the jogger = ?
speed of the


v_o = 872.1 - 10.5

The speed of jogger


v = 4.18 m/s
Answer:
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Explanation:
A voltmeter is built by a galvanometer and a resistance in series, this set is connected in parallel to the resistance where the voltage is to be measured, therefore the voltage is divided between the voltmeter and the element to be measured, consequently the measured voltage It is less than the calculated one, since for them the resistance of the voltmeter is assumed infinite.
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Answer:
D)evaluating a solution
Explanation:
In this scenario, the next logical step would be evaluating a solution. This is because Jasper and Samantha have already identified the problem/need which is that the robot needs to be able to move a 10-gram weight at least 2 meters and turn in a circle. They also designed and implemented a solution because they have already built the robot. Therefore the only step missing is to evaluate and make sure that the robot they built is able to complete the requirements.
Answer:
4.7 s
Explanation:
The complete question is presented in the attached image to this solution.
v(t) = 61 - 61e⁻⁰•²⁶ᵗ
At what time will v(t) = 43 m/s?
We just substitute 43 m/s into the equation for the velocity of the diver and solve for t.
43 = 61 - 61e⁻⁰•²⁶ᵗ
- 61e⁻⁰•²⁶ᵗ = 43 - 61 = -18
e⁻⁰•²⁶ᵗ = (18/61) = 0.2951
In e⁻⁰•²⁶ᵗ = In 0.2951 = -1.2205
-0.26t = -1.2205
t = (1.2205/0.26) = 4.694 s = 4.7 s to the nearest tenth.
Hope this Helps!!!