The answer would be D. <span>The tortoise moved at a constant velocity throughout the race; the hare stopped to rest periodically.
Hope this helped. Good luck!</span>
Answer:
c = e > b = d > a
Explanation:
Given vectors are all unit vectors, therefore they have a magnitude of 1
<h3>Let a, b be two vectors and magnitude of cross product of these two vectors is (magnitude of a) × (magnitude of b) × (sine of angle between these two vectors)</h3>
As all are unit vectors their magnitude is 1 and therefore in this case the cross product between any two vectors depends on the sine of angle between those two vectors
In option a as both the vectors are same, the angle between them will be zero and sin0° will also be 0
In option b angle between those two vectors is 135° and sin135° is 1 ÷ √2
In option c angle between those two vectors is 90° and sin90° is 1
In option d angle between those two vectors is 45° and sin45° is 1 ÷ √2
In option e angle between those two vectors is 90° and sin90° is 1
So by comparison of magnitudes of cross products in each option, the order will be c = e > b = d > a
Answer:
The correct option is A
Explanation:
Firstly, it should be noted that the freezing point of a substance can be assumed to be melting point of that substance because a substance will normally change from liquid to solid (freezes) at the same point it changes from solid to liquid (melts). For example, water freezes at 0°C and also starts melting at 0°C.
Thus, the substance with the lowest melting point among the substances mentioned in the question is alcohol (ethanol) with the melting point of -114°C. Hence, <u>ethanol also has the lowest freezing point thereby freezing at the lowest temperature.</u>
With same braking power you will be stopping faster on the original weight therefore the answer to fill the blank is increase. The stopping distance will increase as there'll be higher energy to dissipate than lighter cars applied with the braking force similar with that of the lighter car. Also the skid and drag will add to the distance as well as the inertia of the moving heavier vehicle would be greater as well.