Hi there!
(a)
Recall that:

W = Work (J)
F = Force (N)
d = Displacement (m)
Since this is a dot product, we only use the component of force that is IN the direction of the displacement. We can use the horizontal component of the given force to solve for the work.

To the nearest multiple of ten:

(b)
The object is not being displaced vertically. Since the displacement (horizontal) is perpendicular to the force of gravity (vertical), cos(90°) = 0, and there is NO work done by gravity.
Thus:

(c)
Similarly, the normal force is perpendicular to the displacement, so:

(d)
Recall that the force of kinetic friction is given by:

Since the force of friction resists the applied force (assigned the positive direction), the work due to friction is NEGATIVE because energy is being LOST. Thus:

In multiples of ten:

(e)
Simply add up the above values of work to find the net work.

Nearest multiple of ten:

(f)
Similarly, we can use a summation of forces in the HORIZONTAL direction. (cosine of the applied force)



Nearest multiple of ten:

Answer:
9.75 x 10^4 J
Explanation:
Work done, W = 9.75 x 10^4 J
According to the work energy theorem, the change in kinetic energy is equal to the work done by all the forces.
So, here work done is 9.75 x 10^4 J so the change in kinetic energy is 9.75 x 10^4 J.
A force over distance is work the unite is joules
Most likely it would dislodge the coconut on the way down due to gravity because on the way up the gravity would slow down the rock but on they down the gravity pulls the rock
Answer:
The gravity is pulling the diver downwards but the rotation of the body means gravity cant pull him down as quickly
Explanation: