A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds
Answer:
The answer is Insulator, Conductor
Explanation:
A/An Insulator is a material in which charges will not move easily, whereas a/an Conductor is a material that allows charges to move about easily
The concept required to solve this problem is related to the wavelength.
The wavelength can be defined as the distance between two positive crests of a wave.
The waves are in phase, then the first distance is

And out of the phase when

Thus the wavelength is

Here,
Wavelength
If we rearrange the equation to find it, we will have



Therefore the wavelength of the sound is 20cm.
Answer:
I'm pretty sure it's B because I studied this topic and I'm not right I'm sorry.
Answer:
Option a)
Explanation:
In the process of charging anything by the method of induction, a charged body is brought near to the body which is neutral or uncharged without any physical contact and the ground must be provided to the uncharged body.
The charge is induced and the nature of the induced charge is opposite to that of the charge present on the charged body.
So when a positively charged rod is used to charge an electroscope, the rod which is positive attracts the negative charge in the electroscope and the grounding of the electroscope ensures the removal of the positive charge and renders the electroscope negatively charged.