first we make a U turn and travel towards home in t = 20 s
so the distance of home from initial position is


Now after picking up the book we travel back with speed 20 m/s
so again after t = 20 s the displacement is given as

so the net displacement is given as


so it will be displaced by total displacement 200 m
The electric force acting on the charge is given by the charge multiplied by the electric field intensity:

where in our problem

and

, so the force is

The initial kinetic energy of the particle is zero (because it is at rest), so its final kinetic energy corresponds to the work done by the electric force for a distance of x=4 m:
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Answer:
C/100 = (F-32) / 180
or, C/5 = (F-32)/9
Explanation:
relation between any two scales is given by:
(X- lower fixed point ) / (upper fixed point -lower fixed point)
where X is any temperature