Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
Answer: The smallest effort = 300N
Explanation:
Using one of the condition for the attainment of equilibrium:
Clockwise moment = anticlockwise moments
900 × 1 = 3 × M
Where M = the weight of the strong man
3M = 900
M = 900/3 = 300N
Therefore, 300N is the smallest effort that the strongman can use to lift the goat
The correct answer is D: which is none of the above.
Hint: a wreckling ball contains pontential energy that acts like a pendulum
a pot of water contains pontential thermal energy
Let t=time to reach the ground=8 secs, g= acceleration of gravity. The speed v on reaching the ground is gt=8g=78.4 m/s where g=9.8 m/s/s approx.