The answer is 18000 kgm/s
Momentum is mass times velocity so just do 750•24.
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
<h2>
Speed with which it return to its initial level is 100 m/s</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 100 m/s
Acceleration, a = -9.81 m/s²
Final velocity, v = ?
Displacement, s = 0 m
Substituting
v² = u² + 2as
v² = 100² + 2 x -9.81 x 0
v² = 100²
v = ±100 m/s
+100 m/s is initial velocity and -100 m/s is final velocity.
Speed with which it return to its initial level is 100 m/s
I think the answer would be letter B.