Answer:

Explanation:
For this case we can use the second law of Newton given by:

The friction force on this case is defined as :

Where N represent the normal force,
the kinetic friction coeffient and a the acceleration.
For this case we can assume that the only force is the friction force and we have:

Replacing the friction force we got:

We can cancel the mass and we have:

And now we can use the following kinematic formula in order to find the distance travelled:

Assuming the final velocity is 0 we can find the distance like this:

171.0798 M/S
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Was this helpful
<span>action is the one car hitting the other, reaction is the other car being pushed away</span>
Answer: Homogenous mixture.
Explanation:
Answer:
Explanation:
From the equation of Newton's laws of motion
v = u + at where v is final velocity , u is initial velocity and t is time.
150 = 0 + a x 3
a = 50 m / s ²
s = ut + 1/2 at² ; s is distance travelled
s = 50 x 3 + .5 x 50 x 3²
= 150 + 225
= 375 m .