Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here
Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)
Answer:
Resultant Force=33.8 lb
Angle=67.2°
Explanation:
Given data
Fa=22 lb
Fb=16 lb
Θ=55⁰
To find
(i) Resultant Force F
(ii)Angle α
Solution
First we need to represent the forces in vector form

Total Force

The Resultant Force is given as

For(ii) angle
We can find the angle bu using tanα=y/x
So

Since the direction of the force and the direction of the path is perpendicular, the person is not doing any physical work.
Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

The question is incomplete but still I answer to assume your thinking.
The picture is attached below!.
Here,
F is the force with which you pull up the incline.
N is the normal force.
w is the weight acting downward.
Axis are mentioned in the attached picture.
Concept:You can see there is no movement of object in the y-direction that means acceleration is zero in y-direction, sum of all the forces in y-direction equal to zero.
According to newton second law,
<span>∑ F = ma
</span>As, acceleration is zero in y-direction, so right hand side is zero in the above equation.
<span>∑ F = 0</span>
N-wcosθ=0
N= m*g*cos25°
N= m*(9.8)*(0.9063)
N= 8.8817*mBy putting the value of mass(m)(not given in the question) you will get the answer.
Hopefully, this is the answer of your question.
The distance between Mars and the Sun in the scale model would be 1140 m
Explanation:
In this scale model, we have:
represents an actual distance of

The actual distance between Mars and the Sun is 228 million km, therefore

On the scale model, this would corresponds to a distance of
.
Therefore, we can write the following proportion:

And solving for
, we find:

Learn more about distance:
brainly.com/question/3969582
#LearnwithBrainly