1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
2 years ago
14

A bowling ball of mass 5.8 kg moves in a straight line at 4.34 m/s How fast must a Ping-Pong ball of mass 2.214 g move in a stra

ight line so that the two balls have the same momentum?
Answer in units of m/s.
Physics
1 answer:
lilavasa [31]2 years ago
6 0

Answer: 11369.46 m/s

Explanation:

We have the following data:

m_{1}=5.8 kg is the mass of the bowling ball

V_{1}=4.34 m/s is the velocity of the bowling ball

m_{2}=2.214 g \frac{1 kg}{1000 g}=0.002214 kg is the mass of the ping-pong ball

V_{2} is the velocity of the ping-pong ball

Now, the momentum p_{1} of the bowling ball is:

p_{1}=m_{1}V_{1} (1)

p_{1}=(5.8 kg)(4.34 m/s)  

p_{1}=25.172 kg m/s (2)

And the momentum p_{2} of the ping-pong ball is:

p_{2}=m_{2}V_{2} (3)

If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:

p_{1}=p_{2} (4)

m_{1}V_{1}=m_{2}V_{2} (5)

Isolating V_{2}:

V_{2}=\frac{m_{1}V_{1}}{m_{2}} (6)

V_{2}=\frac{25.172 kg m/s}{0.002214 kg} (7)

Finally:

V_{2}=11369.46 m/s

You might be interested in
Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let |a| = 22 lb and |b| = 16 lb. Rou
SVEN [57.7K]

Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here

Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)  

Answer:

Resultant Force=33.8 lb

Angle=67.2°

Explanation:

Given data

Fa=22 lb

Fb=16 lb

Θ=55⁰

To find

(i) Resultant Force F

(ii)Angle α

Solution

First we need to represent the forces in vector form

\sqrt{x} F_{1}=22j\\ F_{2}=u+v\\F_{2}=16sin(55)i+16cos(55)j\\F_{2}=16(0.82)i+16(0.5735)j\\F_{2}=13.12i+9.176j

Total Force

F=F_{1}+F_{2}\\ F_{2}=22j+13.12i+9.176j\\F_{2}=13.12i+31.176j

The Resultant Force is given as

|F|=\sqrt{x^{2} +y^{2} }\\|F|=\sqrt{(13.12)^{2} +(31.176)^{2} }\\ |F|=33.8lb

For(ii) angle

We can find the angle bu using tanα=y/x

So

tan\alpha =\frac{31.176}{13.12}\\ \alpha =tan^{-1} (\frac{31.176}{13.12})\\\alpha =67.2^{o}

7 0
3 years ago
A person carries a mass of 10 kg and walks along the +x-axis for a distance of 100m with a constant velocity of 2 m/s. What is t
gizmo_the_mogwai [7]
Since the direction of the force and the direction of the path is perpendicular, the person is not doing any physical work.
3 0
3 years ago
Read 2 more answers
This time particle A starts from rest and accelerates to the right at 65.5 cm/s
FrozenT [24]

Answer:

t = 4 s

Explanation:

As we know that the particle A starts from Rest with constant acceleration

So the distance moved by the particle in given time "t"

d = v_i t + \frac{1}{2}at^2

d = 0 + \frac{1}{2}(65.5)t^2

d_1 = 32.75 t^2 cm

Now we know that B moves with constant speed so in the same time B will move to another distance

d_2 = 44 \times t

now we know that B is already 349 cm down the track

so if A and B will meet after time "t"

then in that case

d_1 = 349 + d_2

32.75 t^2 = 349 + 44 t

on solving above kinematics equation we have

t = 4 s

4 0
3 years ago
The free body diagram shows a box being pulled to the left up a 25-degree incline
Greeley [361]
The question is incomplete but still I answer to assume your thinking.
The picture is attached below!.
Here,
F is the force with which you pull up the incline.
N is the normal force.
w is the weight acting downward.
Axis are mentioned in the attached picture.
Concept:
You can see there is no movement of object in the y-direction that means acceleration is zero in y-direction, sum of all the forces in y-direction equal to zero.
According to newton second law,
<span>∑ F = ma
</span>As, acceleration is zero in y-direction, so right hand side is zero in the above equation.
<span>∑ F = 0</span>
N-wcosθ=0 
N= m*g*cos25°
N= m*(9.8)*(0.9063)
N= 8.8817*m
By putting the value of mass(m)(not given in the question) you will get the answer.
Hopefully, this is the answer of your question.


5 0
3 years ago
Read 2 more answers
a scale model of the solar system where 50 cm represents 1.0x10 to the fifth km is actual distance what would be the dimension o
Fofino [41]

The distance between Mars and the Sun in the scale model would be 1140 m

Explanation:

In this scale model, we have:

x_1 = 50 cm represents an actual distance of

d_1 = 1.0\cdot 10^5 km

The actual distance between Mars and the Sun is 228 million km, therefore

d_2=228\cdot 10^6 km

On the scale model, this would corresponds to a distance of x_2.

Therefore, we can write the following proportion:

\frac{x_1}{d_1}=\frac{x_2}{d_2}

And solving for x_2, we find:

x_2=\frac{x_1 d_2}{d_1}=\frac{(50)(228\cdot 10^6)}{1\cdot 10^5}=1.14\cdot 10^5 cm = 1140 m

Learn more about distance:

brainly.com/question/3969582

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Why didn’t early Portuguese and Dutch explorers decide to create settlements in Australia
    11·1 answer
  • An elevator is moving upward at a constant speed of 2.50 m/s. A bolt in the elevator ceiling 3.00 m above the elevator floor wor
    7·1 answer
  • Why does the moon go through phases?
    13·2 answers
  • the tallest man made structure At present is theWarszawa radio massin Warsaw Poland.This radio mast rises 646m above ground near
    6·1 answer
  • Look at the triangle below.
    7·1 answer
  • If the distance between the two objects is reduced in half, what will be the changed force of attraction between them?
    12·1 answer
  • Explain the why a constant speed has a slope of 0 on a graph of speed v.time.
    12·1 answer
  • if you were floating in the solar system at equal distances between mars (small mass) and jupiter (large mass) which planet woul
    13·1 answer
  • Draw the graph of the cooling curve of Naphtalene; hence discuss the cooling curve of Nephtalene​
    10·2 answers
  • What will happen to the force between 2 charged objects if the mass of one of the charges is doubled and the distance between th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!