Answer:
The astronaut's acceleration is 155.1 times the vehicle's acceleration
Explanation:
These effects due to Newton's third law of action and reaction. Since the forces are equal but in the opposite direction and each acting on a different body. We distance that the Force is F let's calculate the acceleration of the vehicle and the astronaut
Astronaut
F =
a₁
Vehicle
F =
a₁
F = 555.1
a₂
Let's match the equation
a₁ = 155.1
a₂
a₁ = 155.1 a₂
a₁ / a₂ = 155.1
The astronaut's acceleration is 155.1 times the vehicle's acceleration
We see that even when the acceleration of the vehicle is small, there is a very high multiplicative factor.
One method to improve this situation is that the vehicles fear some small retro-rocket vehicles to reduce their acceleration. This would have a very favorable impact on the astronaut's mission.
Another method would be for the astronaut himself to have the retro-rocket and control his acceleration.
Answer:
the radius of bigger loop = 6 cm
Explanation:
given,
two concentric current loops
smaller loop radius = 3.6 cm
]current in smaller loop = 12 A
current in the bigger loop = 20 A
magnetic field at the center of loop = 0
Radius of the bigger loop = ?


now, on solving


= 
= 6 cm
hence, the radius of bigger loop = 6 cm
<span>a=8(m/<span>sec2</span>).. i answered this earlier i think.</span>
Answer:
Explanation:
given that
mass = 10kg
distance = 4m
force = 50N
to calculate the workdone when the force is applied in the same direction of displacement
mathematically,
workdone = force × distance
Workdone = 50 × 4
workdone = 200 joules
2) to calculate the workdone at an angle of 30° with the displacement we apply the formula
workdone = force × distance × cos Ф
workdone = 50 × 4 × cos 30°
workdone = 200 × 0.866
workdone = 173 . 2 joules