Gamma rays<span> are </span>produced<span> in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. When an unstable atomic nucleus decays into a more stable nucleus, the “daughter” nucleus is sometimes </span>produced<span> in an excited state.</span>
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
<em>✔ We have: KE = PE (potential energy) </em>
<em>PE = m x g x h </em>
The potential energy that the pebble of mass 1 has is called PE1 and the potential energy that the pebble of mass 2 has is called PE2
PE1 = PE2 ⇔ PE1/PE2 = 1

The mass m1 is therefore 4 times greater than that of the stone of mass m2.
Answer:
IDC
Explanation:
I DON'T UNDERSTAND........
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
Answer: 49.5 m
Explanation:
The speed of sound
is given by a relation between the distance
and the time
:
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance
towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate
and then find
:
(2)
(3)
Finding
:
This is the distance at which the hunter is from the cliff.