The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
Explanation:
Here are some of the ways that energy can change (transform) from one type to another:
The Sun transforms nuclear energy into heat and light energy.
Our bodies convert chemical energy in our food into mechanical energy for us to move.
An electric fan transforms electrical energy into kinetic energy.
The base unit of time in the metric and SI system is the second.
Answer:
Explanation:
To find the direction of this vector we need o find the angle that has a tangent of the y-component over the x-component:
but since we are in Q2 we have to add 180 degrees to that angle giving us 165.5 degrees
The answer is C. The mass of the platinum sample is greater than the mass of the lead sample. As I explained in a previous answer, if they are the same volume, but one is heavier, then it must be more dense. In this particular example, the platinum is more dense than the lead, and therefore has more mass.