Answer:
a) 
b) the motorcycle travels 155 m
Explanation:
Let
, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

where:
is the speed of the motorcycle at time 2
is the velocity of the car (constant)
is the velocity of the car and the motorcycle at time 1
d is the distance between the car and the motorcycle at time 1
x is the distance traveled by the car between time 1 and time 2
Solving the system of equations:
![\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcar%26motorcycle%5C%5Cx%3Dv_0%5CDelta%7Bt%7D%26x%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%7D%29%20%5CDelta%7Bt%7D%5Cend%7Barray%7D%5Cright%5D)

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

B) a rock being tossed high into the air
Answer:

Explanation:
Given:
- mass of water,

- initial temperature of water,

- initial temperature of pan,

- mass of pan,

- mass of water evapourated,

- specific heat of water,

- specific heat of aluminium pan,

- latent heat of vapourization,

<u>Using the equation of heat:</u>
<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>



Intrusive igneous rocks cool down from magma slowly because they form underneath the surface, that will make them have large crystals.
Extrusive igneous rocks cool down from lava rapidly because they form at the surface, so that will make them have small crystals.
Answer:
B
Explanation:
Reason is that the suitcase is exerted downward and when it moves downward the equation is mgsin tita