Answer:
The radius is 
Explanation:
From the question we are told that
The distance beneath the liquid is 
The refractive index of the liquid is 
Now the critical value is mathematically represented as
![\theta = sin ^{-1} [\frac{1}{n_i} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7Bn_i%7D%20%5D)
substituting values
![\theta = sin ^{-1} [\frac{1}{131} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B131%7D%20%5D)

Using SOHCAHTOA rule we have that

=> 
substituting values


Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





Answer:Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.
Explanation:
Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.