Answer:
Glycolysis produces 4 ATP molecules, giving it a net gain of 2 ATP molecules. The four high energy electrons that are removed by glycolysis are picked by an electron carrier called NAD. NAD becomes NADH.As it spins it grabs an ADP molecule and attaches a phosphate, forming high energy ATP.
Explanation:
Both NADPH and ATP are phosphorylated compounds, both are very important catabolic as well as anabolic processes. To explain the difference, their respective functions/roles in biochemical processes should be described along with relevant chemical properties.
ATP (Adenosine triphospahte) is called an energy rich molecule because of the large negative free energy of its hydrolysis (And has nothing to do with high bond energy).
30.5 kilo Joules or 7.3 kilo calorie energy is liberated after hydrolysis of one ATP molecule to form ADP (Adenosine diphosphate) and phosphate.The reaction is almost irreversible
Answer:
1 cilia 2 I don't know I'm so sorry
Answer:
The order of events would be:
4.Threshold stimulus, Na+ channels open. This is the first event
5.Na+ influx, Depolarization. Second event
2.Na+ channels close, K+ channels open. This is the third event
1.K+ efflux, Repolarization. Fourth event
3.Hyperpolarization, K+ channels close
Explanation:
In resting state, the membrane is negative inside, and K+ concentration is higher than outside. Na+ concentration is higher outside instead.
Sodium influx is responsible for membrane depolarization. It's the event to produce the action potential. When sodium channels are closing, potassium channels open and K+ go outside until repolarization occurs. But now we have both ions in different sides of the membrane, and this can't be stimulated again to produce other action potential. The membrane will remain refractory to respond to the adequate stimulus until ions migrate to their original sites. This is Na+ outside, and K+ inside. This is responsibility of the Na+/ K+ pump, that uses ATP to pump Na+ out, and K+ in. Once both ions had been relocated in the membrane, this is ready to receive a correct stimulus to produce a new action potential.