Answer:
Impulse =14937.9 N
tangential force =14937.9 N
Explanation:
Given that
Mass of car m= 800 kg
initial velocity u=0
Final velocity v=390 km/hr
Final velocity v=108.3 m/s
So change in linear momentum P= m x v
P= 800 x 108.3
P=86640 kg.m/s
We know that impulse force F= P/t
So F= 86640/5.8 N
F=14937.9 N
Impulse force F= 14937.9 N
We know that
v=u + at
108.3 = 0 + a x 5.8

So tangential force F= m x a
F=18.66 x 800
F=14937.9 N
Answer:
a. true
Explanation:
Firstly, we need to understand what takes places during the compression process in a quasi-equilibrium process. A quasi-equilibrium process is a process in during which the system remains very close to a state of equilibrium at all times. When a compression process is quasi-equilibrium, the work done during the compression is returned to the surroundings during expansion, no exchange of heat, and then the system and the surroundings return to their initial states. Thus a reversible process.
While for a non-quasi equilibrium process, it takes more work to move the piston against this high-pressure region.
Complete Question
Complete Question is attached below.
Answer:

Explanation:
From the question we are told that:
Diameter 
Power 
Head loss 




Generally the equation for Power is mathematically given by

Therefore



Since

Where


Therefore


Answer:

Explanation:
Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

The initial pressure is:

The speed at outlet is:

![v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%28250%5C%2C%5Cfrac%7Bgal%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B3.785%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%5E%7B3%7D%7D%7B1%5C%2Cgal%7D%20%29%5Ccdot%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%281.125%5C%2Cin%29%5Ccdot%28%5Cfrac%7B0.0254%5C%2Cm%7D%7B1%5C%2Cin%7D%20%29%5D%5E%7B2%7D%20%7D)

The initial pressure is:

