True strain and engineering strain? True stress is defined as the load divided by the cross-sectional area of the specimen at that instant and is a true indication of the internal pressures. ... Engineering stress is defined as the load divided by the initial cross-sectional area of the specimenAnswer:
Explanation:
The first one is d or the 4th answer choice and the second one is false. Hope this helps!
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ
Search engines use specific algorithms based on their data size and structure to produce a return value.
Linear Search Algorithm. ...
Binary Search Algorithm. ...
Relevancy. ...
Individual Factors. ...
Off-Page Factors.
Answer:
Change in entropy S = 0.061
Second law of thermodynamics is satisfied since there is an increase in entropy
Explanation:
Heat Q = 300 kW
T2 = 24°C = 297 K
T1 = 7°C = 280 K
Change in entropy =
S = Q(1/T1 - 1/T2)
= 300(1/280 - 1/297) = 0.061
There is a positive increase in entropy so the second law is satisfied.