Answer:
Step 1: List you assets
Step 2: List your liabilities
Step 3: Subtract your liabilities from your
assets
Step 4: Total your assets
Step 5: Total your liabilities
Answer:
The focal length of the mirror is 52.5 cm.
Explanation:
Given that,
Object to Image distance d = 140 cm
Image distance v= 35 cm
We need to calculate the object distance


We need to calculate the focal length
Using formula of mirror

Put the value into the formula



Hence, The focal length of the mirror is 52.5 cm.
The magnitude of the air drag is 784 N
Explanation:
An object falling down reaches the terminal velocity when the magnitude of the air drag acting on it becomes equal to the weight of the object. Mathematically, this condition can be written as:

where
is the magnitude of the air drag
m is the mass of the object
g is the acceleration of gravity
In this problem, we have
m = 80 kg is the mass of the airman
is the acceleration of gravity
Substituting into the formula, we find:

Learn more about forces here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
To solve the problem, use Kepler's 3rd law :
T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
but first covert 6.00 years to seconds :
6.00years = 6.00years(365days/year)(24.0hours/day)(6...
= 1.89 x 10^8s
The radius of the orbit then is :
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.89 x 10^8s)² / 4π²]⅓
= 6.23 x 10^11m
Density=mass÷volume
mass=density×volume
mass=2×8=16 g