Answer:
Explanation:
You can approach an expression for the instantaneous velocity at any point on the path by taking the limit as the time interval gets smaller and smaller. Such a limiting process is called a derivative and the instantaneous velocity can be defined as.#3
For the special case of straight line motion in the x direction, the average velocity takes the form: If the beginning and ending velocities for this motion are known, and the acceleration is constant, the average velocity can also be expressed as For this special case, these expressions give the same result. Example for non-constant acceleration#1
Answer:
<u>CHEMICAL CHANGE</u>:
A change in which one or more substances are converted into new substances is a <em>chemical change</em>.
<u>EXPLANATION:</u>
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances.
<u>EXAMPLE:</u>
<em>Examples of Chemical Change in Everyday Life
</em>
Burning of paper and log of wood.
Digestion of food.
Boiling an egg.
Chemical battery usage.
Electroplating a metal.
Baking a cake.
Milk going sour.
Various metabolic reactions that take place in the cells.
Answer:
a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards
Explanation:
The forces on the athlete are
a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,
therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards
b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles
c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.
Answer:

Explanation:
Two identical bodies are sliding toward each other on a frictionless surface.
Initial speed of body 1, m₁ = 1 m/s
Initial speed of body 2, m₂ = 2 m/s
They collide and stick.
We need to find the speed of the combined mass. Let V is the speed of the combined mass.
Using the conservation of momentum.

We have, m₁ = m₂ = m

So, the speed of the combined mass is
.
Answer:
Basic kinematics, negating drag and assuming ideal conditions, we use the equation:
d=vi*t+1/2*a*t^2
Since vi is 0 (we know this because you’re dropping it, not throwing it)…
…and the only acceleration acting on it is gravity, a=9.8 m/s^2…
…we get
d=1/2(9.8)(5)^2
Explanation:
Some quick mental math tells us that this is about 125 m.
Plugging it in, we find it to be 122.5 m.