The law of conservation of momentum<span> states that for two objects colliding in an isolated system, the total </span>momentum<span> before and after the collision is equal. Momentum should be conserved. Hope this answers the question. Have a nice day.</span>
Answer:
Animals must eat other plants or animals to obtain the <u>energy</u> stored in the food
Explanation:
One classification of living organisms, according to the way they obtain energy, is that of autotrophs and heterotrophs. The first group is represented by plants, which process their own nutrients from inorganic matter.
<u>Animals -heterotrophes- are unable to process their own nutrients</u>, so they must obtain them from other organisms, either plants or animals. External food sources provide them with nutrients, which contain the energy substrate needed to perform their vital functions.
Learn more:
Autotrophs and heterotrophs brainly.com/question/7695115
Using Newton's second law of motion:
F=ma ; [ F = force (N: kgm/s^2);m= mass (kg); a = acceleration (m/s^2)
Given: Find: Formula: Solve for m:
F: 2500N mass:? F=ma Eq.1 m=F/a Eq. 2
a= 200m/s^2
Solution:
Using Eq.2
m= (2500 kgm/s^2)/ (200m/s^2) = 12.5 kg
B . it should be convert energy.
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 