Answer:
Abiotic is non living thing, while biotic is a living thing
hope this info helps
Answer:
0.1
Explanation:
We must first put down the equation of the reaction in order to guide our solution of the question.
2HNO3(aq) + Sr(OH)2(aq) -------> Sr(NO3)2(aq) + 2H2O(l)
Now from the question, the following were given;
Concentration of acid CA= ??????
Concentration of base CB= 0.299M
Volume of acid VA= 17.8ml
Volume of base VB= 24.7ml
Number of moles of acid NA= 2
Number of moles of base NB= 1
From;
CAVA/CBVB= NA/NB
CAVANB= CBVBNA
CA= CBVBNA/VANB
SUBSTITUTING VALUES;
CA= 0.299 × 24.7 ×2 / 17.8×1
CA= 0.8298 M
But;
pH= -log[H^+]
[H^+] = 0.8298 M
pH= -log[0.8298 M]
pH= 0.1
The rate law equation for Ozone reaction
r=k[O][O₂]
<h3>Further e
xplanation</h3>
Given
Reaction of Ozone :.
O(g) + O2(g) → O3(g)
Required
the rate law equation
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For reaction
aA + bB ⇒ C + D
The rate law can be formulated:
![\large{\boxed{\boxed{\bold{r~=~k.[A]^a[B]^b}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%5Cboxed%7B%5Cbold%7Br~%3D~k.%5BA%5D%5Ea%5BB%5D%5Eb%7D%7D%7D)
where
r = reaction rate, M / s
k = constant, mol¹⁻⁽ᵃ⁺ᵇ⁾. L⁽ᵃ⁺ᵇ⁾⁻¹. S⁻¹
a = reaction order to A
b = reaction order to B
[A] = [B] = concentration of substances
So for Ozone reaction, the rate law (first orde for both O and O₂) :
![\tt \boxed{\bold{r=k[O][O_2]}}](https://tex.z-dn.net/?f=%5Ctt%20%5Cboxed%7B%5Cbold%7Br%3Dk%5BO%5D%5BO_2%5D%7D%7D)
Answer:
65.4%
Explanation:
The redox reaction is a 1:1:1 reaction because the reagents suffer a double displacement reaction, and the substance that is substituted have the same charge (H+ and Br-), thus, we first need to know which of the reagents is the limiting.
Let's test the 4-nitrobenzaldehyde as the limiting. The mass needed for sodium borohydride (m) is the mass given of 4-nitrobenzaldehyde multiplied by the stoichiometric mass of sodium borohydride divided by the stoichiometric mass of 4-nitrobenzaldehyde. The stoichiometric mass is the number of moles in the stoichiometric representation (1:1:1) multiplied by the molar mass, so:
m = (4.13 * 37.83*1)/(151.12*1)
m = 1.034 g
So, the mass needed of the other reagent is larger than the mass that was given, so, it will be the limiting, and the stoichiometric calculus must be done with it.
The mass of the product that was expected is then:
m = (0.700*153.14*1)/(37.83*1)
m = 2.83 g
The percent yield is the mass that was formed divided by the expected mass, and then multiplied by 100%:
%yield = (1.85/2.83)*100%
%yield = 65.4%