Answer: sorry but I can’t help
Explanation:because I can’t see it
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.
Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have

here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have

So correct answer will be
B. The current increases.
Answer:
f = 130 Khz
Explanation:
In a circuit driven by a sinusoidal voltage source, there exists a fixed relationship between the amplitudes of the current and the voltage through any circuit element, at any time.
For an inductor, this relationship can be expressed as follows:
VL = IL * XL (1) , which is a generalized form of Ohm's Law.
XL is called the inductive reactance, and is defined as follows:
XL = ω*L = 2*π*f*L, where f is the frequency of the sinusoidal source (in Hz) and L is the value of the inductance, in H.
Replacing in (1), by the values given of VL, IL, and L, we can solve for f, as follows:
f = VL / 2*π*IL*L = 12 V / 2*π*(3.00*10⁻³) A* (4.9*10⁻³) H = 130 Khz
Answer:
C) The rate of change from potential to kinetic energy is exponential.
Explanation:
As we know that total mechanical energy must be conserved here
As we know that there is no friction force on this system of electromagnet and nail
So here we can say that that
Magnetic potential energy of the nail + electromagnet system will convert into kinetic energy of the nail as it is released.
So we will have
Initial potential energy = work done to move it away by 10 cm


now as the nail is released then this potential energy will start to convert into kinetic energy
So here correct answer must be
C) The rate of change from potential to kinetic energy is exponential.