Answer:
54 grams ammonium chloride and 40 grams sodium hydroxide
Explanation:
A buffer is a solution that contains either a weak acid and its salt or a weak base and its salt, the solution is resistant to changes in pH. This means that, a buffer is an aqueous solution of either a weak acid and its conjugate base or a weak base and its conjugate acid.
A Buffer is used to maintain a stable pH in a solution, buffers can neutralize small quantities of additional acid of base. For any buffer solution, there is always a working pH range and a set amount of acid or base that can be neutralized before the pH will change. The amount of acid or base that can be added to a buffer before changing its pH is called its buffer capacity.
A good buffer mixture is supposed to have about equal concentrations of its both components. It is a rule of thumb therefore, that a buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other component.
The implication of this is that the ammonium chloride and sodium hydroxide should be of approximately the same concentration. If the masses are dissolved as shown in the answer, then we will have 1molL-1 of each component of the buffer in accordance with the rule of thumb stated above.
Explanation:
We have a molecule composed of 3" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; one; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">33 iron atoms, and 4" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: p; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">44 atoms of another element. We are given the following information: it has 2.36 g" role="presentation" style="box-sizing: inherit; margin: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">2.36 g2.36 g of iron for 3.26 g" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: -wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">3.26 g3.26 g of molecule.
I want to find the molar mass of the compound, I have tried so far:
m=3.26 g=0.00326 kg" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; display: inline; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">m=3.26 g=0.00326 kgm=3.26 g=0.00326 kg
Since it has 3" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; nt-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">FeFe and 4" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; ; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">44 atoms of an unknown substance, therefore:
3+4=7 atoms,1 mol=6.022⋅1023 atoms76.022⋅1023=1.16⋅10−23" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: : ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; width: 10000em !important; ; font-family: inherit; eight: none; min-width: 0px; min-height: 0px; position: relative;">0.003260.00326 by 1.16⋅10−23" role="presentation"; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">1.16⋅10−231.16⋅10−23 and I obtained 2.79429⋅1019" role="presentation" style="box-sizing: inherit; margin: 0px; padding: 0px; border: 0px; f inherit; font-size: 15px; vertical-align: baseline; display: inline; text-indent: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">2.79429⋅10
IT'S TOTAL ANSWER OF ITS AND THIS QUESTION IS IN MATHEMATION FINAL EXAM. PLEASE GIVE❤ AND MARK ME A BRAINLIST
Hey there!:
Molar mass NaCl = 58.44 g/mol
Number of moles:
n = mass of solute / molar mass
n = 15.6 / 58.44
n = <span>0.2669 moles of NaCl
hope this helps!</span>
Answer:
Adding salt to the water increases the density of the solution because the salt increases the mass without changing the volume very much. When you add table salt (sodium chloride, NaCl) to water, the salt dissolves into ions, Na+ and Cl-. The volume increases by a small factor, but the mass increases by a bigger factor.
Explanation: