Answer:
27°C or 300K
Explanation
We were told that the pressureof the system decreased by 10 times implies that P2= P1/10
Where P2=final pressure
P1= initial pressure
Wew were also told that the volume of the system increased by 5 times this implies that V2= 5×V1
Where T2= final temperature =-123C= 273+(-123C)=150K
T1= initial temperature
But from gas law
PV=nRT
As n and R are constant
P1V1/T1 = P2V2/T2
T1= P1V1T2/P2V2
T1=2×T2
T1=2×150
T1=300K
=300-273
=27°C
the initial temperature (°C) of a system is 27°C
Answer:
C = 0.2349 J/ (g °C)
Explanation:
Mass, m = 894.0g
Initial Temperature = −5.8°C
Final Temperature = 17.5°C
Temperature change = 17.5°C - (−5.8°C) = 23.3
Heat, H = 4.90kJ = 4900 J
Specific heat capacit, C = ?
The relationship between these quantities is given by the equation;
H = mCΔT
C = H / mΔT
C = 4900 / (894)(23.3)
C = 0.2349 J/ (g °C)
I think the answer would be A.
I think! I could be wrong!
<span>Water is known as a polar molecule because the oxygen atom has a greater attraction for electrons than the hydrogen atom does. Oxygen is more electronegative than that of hydrogen creating a partial charges with the hydrogen and oxygen atoms. Also, the electrons of the covalent bond are not shared equally between the hydrogen and oxygen atoms making it polar.</span>
Answer: Halogens tend to attract electrons when bonding (Option C)
Explanation: Halogens being non metals have greater electronegativities hence, attract electrons and making the statement disputed. Nobel gases are highly stable; this explains why they are nonreactive. They do not form chemical bonds because they only have a little tendency to either gain or lose an electron; on the other hand, halogens are reactive because they only need one additional electron to complete their octet.