Answer:
Photosynthesis
Explanation:
Photosynthesis uses energy from light to convert water and carbon dioxide molecules into glucose (sugar molecule) and oxygen. The oxygen is released, or “exhaled”, from leaves while the energy contained within glucose molecules is used throughout the plant for growth, flower formation, and fruit development.
The term "valence electrons" refers to all of the electrons in an atom's outermost shell.
The centre of the atom is where the nucleus is. The nucleus contains protons and neutrons. The electrons travel in a specific circular direction and at a specific distance from the nucleus.
The atom's final shell's electrons take part in chemical reactions and the production of bonds. Both ionic and covalent bonding involve valence electrons. Metals are elements with one, two, or three electrons in their final shell.
These substances become positive ions after losing their electrons. Non-metals are substances with 5, 6, or 7 electrons in the outermost shell. These substances all gain electrons and change into negative ions.
Ionic bonds are those created by the transfer of electrons between metals and non-metals. For instance, ionic bonding allows sodium and chlorine to interact to generate sodium chloride.
To know more about valence electrons here
brainly.com/question/371590
#SPJ4
Answer: X3+
Explanation:
Every atom aim to achieve stability by receiving electrons or giving their valence electrons in order to have a complete outermost shell of 2 (duplet) or 8 (octet structure).
In this case, the atom X will easily give off its three valence electrons to another atom(s), thereby forming a trivalent positive ion (X3+) with a stable duplet or octet structure (i.e an outermost shell with 2 or 8 electrons).
X --> X3+ + 3e-
Thus, due to the give away of three electrons (3e-), the atom X becomes X3+.
Answer:
The number of protons and neutrons.
Explanation:
Neutrons and Protons can't be removed from nucleus from chemical reactions because they are held together super strong and tight. However, nuclear reactions are strong enough to separate them.
hope this helps :)
Answer:
I^3, aFeO BfEi^3 O, c, dFe^2 O^3
Explanation: