Answer:

Explanation:
The hydrocarbon shown has a double bond. Hydrocarbons with double bonds are known as alkenes.
Cyclic alkanes have cyclic structure.
Alkanes only have single bonds.
Alkynes have triple bonds.
The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
Answer:
A) t = 22.5 min and B) t = 29.94 min
Explanation:
Initial concentration, [A]₀ = 100
Final concentration = 100 -75 = 25
Time = 45 min
A) First order reaction
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[25] − ln[100] = - 45k
-1.386 = -45k
k = 0.0308 min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[50] − ln[100] = - 0.0308 * t
-0.693 = -0.0308 * t
t = 22.5 min
B) Zero Order
[A] = [A]₀ − kt
Using the values from the initial reaction and solving for k, we have;
25 = 100 - k(45)
-75 = -45k
k = 1.67 M min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
[A] = [A]₀ − kt
50 = 100 - (1.67)t
-50 = - 1.67t
t = 29.94 min
Hey there,
So. . I believe is how you do it. I did 350 x 3.0 and it got me 1,050.
We always multiply it by when it come to the initial volume of the gas.
Hope this helps.
~Jurgen<span />
The answer is; A
By using a spring and determining the tension applied on the string by the car, it is possible to deduce the force. Determine the spring's initial tension as well as spring rate and working loads;
Rate = (Load – Initial Tension) ÷ Travel
k = (L – IT) ÷ T