I am sorry, I would love to help but I am not sure. Good luck anyways. :(
Factor the denominator:
(3x-1)(x+2)
every time x=-2 (because of (x+2), it would cause a warp in the graph, and not have an input. that is the vertical asymptote.
since you have factor 3x-1 on top and bottom, in which the zero is 1/3, there would be no solution at x=1/3. it would be a hole.
the answer here is C.
Answer:
![\mathrm{Minimum}\space\left(\frac{7}{2},\:-\frac{33}{4}\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BMinimum%7D%5Cspace%5Cleft%28%5Cfrac%7B7%7D%7B2%7D%2C%5C%3A-%5Cfrac%7B33%7D%7B4%7D%5Cright%29)
Step-by-step explanation:
![y=x^2-7x+4\\\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-\frac{b}{2a}\\\mathrm{The\:parabola\:params\:are:}\\a=1,\:b=-7,\:c=4\\x_v=-\frac{b}{2a}\\x_v=-\frac{\left(-7\right)}{2\cdot \:1}\\\mathrm{Simplify}\\x_v=\frac{7}{2}\\\mathrm{Plug\:in}\:\:x_v=\frac{7}{2}\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}\\y_v=\left(\frac{7}{2}\right)^2-7\cdot \frac{7}{2}+4\\](https://tex.z-dn.net/?f=y%3Dx%5E2-7x%2B4%5C%5C%5Cmathrm%7BThe%5C%3Avertex%5C%3Aof%5C%3Aan%5C%3Aup-down%5C%3Afacing%5C%3Aparabola%5C%3Aof%5C%3Athe%5C%3Aform%7D%5C%3Ay%3Dax%5E2%2Bbx%2Bc%5C%3A%5Cmathrm%7Bis%7D%5C%3Ax_v%3D-%5Cfrac%7Bb%7D%7B2a%7D%5C%5C%5Cmathrm%7BThe%5C%3Aparabola%5C%3Aparams%5C%3Aare%3A%7D%5C%5Ca%3D1%2C%5C%3Ab%3D-7%2C%5C%3Ac%3D4%5C%5Cx_v%3D-%5Cfrac%7Bb%7D%7B2a%7D%5C%5Cx_v%3D-%5Cfrac%7B%5Cleft%28-7%5Cright%29%7D%7B2%5Ccdot%20%5C%3A1%7D%5C%5C%5Cmathrm%7BSimplify%7D%5C%5Cx_v%3D%5Cfrac%7B7%7D%7B2%7D%5C%5C%5Cmathrm%7BPlug%5C%3Ain%7D%5C%3A%5C%3Ax_v%3D%5Cfrac%7B7%7D%7B2%7D%5C%3A%5Cmathrm%7Bto%5C%3Afind%5C%3Athe%7D%5C%3Ay_v%5C%3A%5Cmathrm%7Bvalue%7D%5C%5Cy_v%3D%5Cleft%28%5Cfrac%7B7%7D%7B2%7D%5Cright%29%5E2-7%5Ccdot%20%5Cfrac%7B7%7D%7B2%7D%2B4%5C%5C)
![\mathrm{Simplify\:}\left(\frac{7}{2}\right)^2-7\cdot \frac{7}{2}+4:\quad -\frac{33}{4}\\y_v=-\frac{33}{4}\\Therefore\:the\:parabola\:vertex\:is\\\left(\frac{7}{2},\:-\frac{33}{4}\right)\\\mathrm{If}\:a0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}\\a=1\\\mathrm{Minimum}\space\left(\frac{7}{2},\:-\frac{33}{4}\right)](https://tex.z-dn.net/?f=%5Cmathrm%7BSimplify%5C%3A%7D%5Cleft%28%5Cfrac%7B7%7D%7B2%7D%5Cright%29%5E2-7%5Ccdot%20%5Cfrac%7B7%7D%7B2%7D%2B4%3A%5Cquad%20-%5Cfrac%7B33%7D%7B4%7D%5C%5Cy_v%3D-%5Cfrac%7B33%7D%7B4%7D%5C%5CTherefore%5C%3Athe%5C%3Aparabola%5C%3Avertex%5C%3Ais%5C%5C%5Cleft%28%5Cfrac%7B7%7D%7B2%7D%2C%5C%3A-%5Cfrac%7B33%7D%7B4%7D%5Cright%29%5C%5C%5Cmathrm%7BIf%7D%5C%3Aa%3C0%2C%5C%3A%5Cmathrm%7Bthen%5C%3Athe%5C%3Avertex%5C%3Ais%5C%3Aa%5C%3Amaximum%5C%3Avalue%7D%5C%5C%5Cmathrm%7BIf%7D%5C%3Aa%3E0%2C%5C%3A%5Cmathrm%7Bthen%5C%3Athe%5C%3Avertex%5C%3Ais%5C%3Aa%5C%3Aminimum%5C%3Avalue%7D%5C%5Ca%3D1%5C%5C%5Cmathrm%7BMinimum%7D%5Cspace%5Cleft%28%5Cfrac%7B7%7D%7B2%7D%2C%5C%3A-%5Cfrac%7B33%7D%7B4%7D%5Cright%29)
The sum of the first n natural numbers and 0=
n*(n+1)/2
Answer:
w = 8
Step-by-step explanation:
–9 = –3(w − 5)
-3(w - 5) = -9
w - 5 = 3
w = 5 + 3
w = 8