Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
Answer: Glass may break at low temperatures, but this is because the contents freeze and their expansion cause the glass to crack (if the cap does not come off). ... Hot temperatures can cause the glass to break when the bottle is subject to excessive thermal variations. hope this helps can u give me brainliest
Explanation:
This is a great problem if you like getting tied up in knots
and making smoke come out of your brain.
I found that it makes the problem a lot easier if I give the objects some
numbers. I'm going to say that the mass of Object 5 is 20 clods.
Let the mass of Mass of Object 5 be 20 clods .
Then . . .
-- The mass of Object 2 is double the mass of Object 5 = 40 clods.
-- The mass of Object 4 is half of the mass of Object 5 = 10 clods.
and
-- the mass of Object 3 is half of the mass of Object 4 = 5 clods.
So now, here are the masses:
Object #1 . . . . . unknown
Object #2 . . . . . 40 clods
Object #3 . . . . . 5 clods
Object #4 . . . . . 10 clods
Object #5 . . . . . 20 clods .
Now let's check out the statements, and see how they stack up:
Choice-A:
Object 3 and Object 5 exert the same gravitational force on Object 1.
Can't be.
Objects #3 and #5 have different masses, so they can't both
exert the same force on the same mass.
Choice-B.
Object 2 and Object 4 exert the same gravitational force on Object 1.
Can't be.
Objects #2 and #4 have different masses, so they can't both
exert the same force on the same mass.
Choice-C.
The gravitational force between Object 1 and Object 2 is greater than
the gravitational force between Object 1 and Object 4.
Yes ! Yay !
Object-2 has more mass than Object-4 has, so it must exert more force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Choice-D.
The gravitational force between Object 1 and Object 3 is greater than the gravitational force between Object 1 and Object 5.
Can't be.
Object-3 has less mass than Object-5 has, so it must exert less force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Conclusion:
If the DISTANCE is the same for all the tests, then Choice-C is
the only one that can be true.
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.