Answer:
f= 4,186 10² Hz
Explanation:
El sistema descrito es un pendulo de torsión que oscila con con velocidad angular, que esta dada por
w = √ k/I
donde ka es constante de torsion de hilo e I es el momento de inercia del disco
El momento de inercia de indican que giran un eje que pasa por enronqueces
I= ½ M R2
reduzcamos las cantidades al sistema SI
R= 1,4 cm = 0,014 m
M= 430 g = 0,430 kg
substituimos
w= √ (2 k/M R2)
calculemos
w = RA ( 2 370 / (0,430 0,014 2)
w = 2,963 103 rad/s
la velocidad angular esta relacionada con la frecuencia por
w =2pi f
f= w/2π
f= 2,963 10³/ (2π)
f= 4,186 10² Hz
Answer:a. Magnetic dipole moment is 0.3412Am²
b. Torque is zero(0)N.m
Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A
That is,
U = n*I*A
But Area A is given as pi*radius² since it is a circular coil
Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is
A = 3.142*(0.05)² =7.86*EXP {-3} m²
Current I is 2 A
Number of turns is 20
So magnetic dipole moment U is
U = 20*2*7.86*EXP {-3}=0.3142A.m²
b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U
Torque = B x U =B*U*Sine(theta)
But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m
Answer:
4.55 x 10⁹m
Explanation:
Given parameters:
Mass of object 1 = 3.1 x 10⁵kg
Mass of object 2 = 6.5 x 10³kg
Gravitational force = 65N
Unknown:
Distance between them = ?
Solution:
To solve this problem, we use the expression below from the universal gravitational law;
Fg =
G = 6.67 x 10⁻¹¹
65 =
Distance = 4.55 x 10⁹m
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so
The cross-sectional area is proportional to the square of the diameter, so:
And solving eq.(1) for v2, we find the final velocity:
Now we can use Bernoulli's equation to find the pressure drop:
where
is the blood density
are the initial and final pressure
So the pressure drop is:
W boson has +1e or - 1e charge, Z boson has 0 charge.
Leptons have +1e, -1e or 0 charge.
Photons have 0 charge.
Only quarks have a charge of +2/3e or -1/3e of an electron charge.
To be exact, only up-type quarks (Up, Down and Top quarks) have a +2/3e or two thirds of an electron charge.
So the correct answer is D) Quark.