1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
9

Dimension of a cuboid is 4 m 3 m ad 5 m how many such cuboid can form a cube....... please and urgent..experts please help

Mathematics
1 answer:
larisa [96]3 years ago
4 0

Step-by-step explanation:

We dimension of the smallest cube to be made from cuboids of sides 3 m , 4 m and 5 m will be the least common multiple of 3 m, 4 m and 5 m i.e. 60 m

12 cuboidal should be stacked along 5 m edge to 60 m, 15 cuboids should be stacked along 4 m edge and 20. cuboids should be stacked along edge to make a cube of 60 m edge, Hence number of cuboids are 12× 15 ×20=3600

hope it helps

You might be interested in
I need help please this is for math
maxonik [38]
5x + 13 Hope this helps you
8 0
3 years ago
Graph the equation y=-X – 2 using the intercepts.
ahrayia [7]

Answer:

y intercept = (0,-2)

x intercept = (-2,0)

Step-by-step explanation:

For y intercept, plug 0 for x

y = (0) - 2

y = -2

y intercept = -2

For x intercept, plug 0 for y

(0) = -x - 2

Move -2 to other side

-x = 2

Since x is negitave, make 2 negitave

x = -2

x intercept = -2

4 0
2 years ago
The bucket is 30% full. when half way empty it is 15% full. how full is the bucket when 250% full?
Sunny_sXe [5.5K]

Answer:

125%

Step-by-step explanation:

divide 250% by 2

7 0
2 years ago
Read 2 more answers
Find x so that the points (x,x+1), (x+2,x+3) and (x+3,2x+4) form a right-angled triangle.
azamat

Let <em>a</em>, <em>b</em>, and <em>c</em> be vectors each starting at the origin and terminating at the points (<em>x</em>, <em>x</em> + 1), (<em>x</em> + 2, <em>x</em> + 3), and (<em>x</em> + 3, 2<em>x</em> + 4), respectively.

Then the vectors <em>a</em> - <em>b</em>, <em>a</em> - <em>c</em>, and <em>b</em> - <em>c</em> are vectors that point in directions parallel to each of the legs formed by the triangle with these points as its vertices.

If this triangle is to contain a right angle, then exactly one of these pairs of vectors must be orthogonal. In other words, one of the following must be true:

(<em>a</em> - <em>b</em>) • (<em>a</em> - <em>c</em>) = 0

<em>or</em>

(<em>a</em> - <em>b</em>) • (<em>b</em> - <em>c</em>) = 0

<em>or</em>

(<em>a</em> - <em>c</em>) • (<em>b</em> - <em>c</em>) = 0

We have

<em>a</em> - <em>b</em> = (<em>x</em>, <em>x</em> + 1) - (<em>x</em> + 2, <em>x</em> + 3) = (-2, -2)

<em>a</em> - <em>c</em> = (<em>x</em>, <em>x</em> + 1) - (<em>x</em> + 3, 2<em>x</em> + 4) = (-3, -<em>x</em> - 3)

<em>b</em> - <em>c</em> = (<em>x</em> + 2, <em>x</em> + 3) - (<em>x</em> + 3, 2<em>x</em> + 4) = (-1, -<em>x</em> - 1)

Case 1: If (<em>a</em> - <em>b</em>) • (<em>a</em> - <em>c</em>) = 0, then

(-2, -2) • (-3, -<em>x</em> - 3) = (-2)×(-3) + (-2)×(-<em>x</em> - 3) = 2<em>x</em> + 12 = 0   ==>   <em>x</em> = -6

which would make <em>a</em> - <em>c</em> = (-3, 3) and <em>b</em> - <em>c</em> = (-1, 5), and their dot product is not zero. Then the triangles vertices are at the points (-6, -5), (-4, -3), and (-3, -8).

Case 2: If (<em>a</em> - <em>b</em>) • (<em>b</em> - <em>c</em>) = 0, then

(-2, -2) • (-1, -<em>x</em> - 1) = (-2)×(-1) + (-2)×(-<em>x</em> - 1) = 2<em>x</em> + 4 = 0   ==>   <em>x</em> = -2

which would make <em>a</em> - <em>c</em> = (-3, -1) and <em>b</em> = (-1, 1), and their dot product is also not zero. The vertices are the points (-2, -1), (0, 1), and (1, 0).

Case 3: If (<em>a</em> - <em>c</em>) • (<em>b</em> - <em>c</em>) = 0, then

(-3, -<em>x</em> - 3) • (-1, -<em>x</em> - 1) = (-3)×(-1) + (-<em>x</em> - 3)×(-<em>x</em> - 1) = <em>x</em> ² + 4<em>x</em> + 6 = 0

but the solutions to <em>x</em> here are non-real, so we throw out this case.

So there are two possible values of <em>x</em> that make a right triangle, <em>x</em> = -6 and <em>x</em> = -2.

3 0
3 years ago
Which is the value of this expression when a=5 and k=-2
Zinaida [17]

Answer:

Option C is correct.

Step-by-step explanation:

We are given the expression:

(\frac{3^2a^{-2}}{3a^{-1}})^k

The value of a =5 and k = -2

Putting the values and solving

=(\frac{3^2*5^{-2}}{3*5^{-1}})^-2\\=(\frac{3^{2-1}}{5^{-1+2}})^-2\\=(\frac{3^{1}}{5^{1}})^-2\\\\=(\frac{3}{5})^-2\\if \,\,a^{-1} \,\,then\,\, 1/a\\=\frac{(3)^{-2}}{(5)^{-2}}\\ Can\,\,be\,\,written\,\,as\\\\=\frac{(5)^{2}}{(3)^{2}} \\=\frac{25}{9}

Option C is correct.

3 0
3 years ago
Other questions:
  • PLEASE HELP!
    15·1 answer
  • Simplify cos5cos40-sin5cos40
    15·2 answers
  • Zander is in charge of filling goodie bags for the upcoming school party.He plans to order prizes from an online party store.The
    10·1 answer
  • Does the point (4,2) satisfy y=5x
    11·2 answers
  • Kali builds a tower using only red, green, and blue toy bricks in a ratio of 4:3:1. She then removes 1/2 of the green bricks and
    15·1 answer
  • Paul has 30$ to spend at the fair if the admission to the fair is 5$ and the rides cost 3.50 each how many rides can paul go on
    11·2 answers
  • You have 12 cups of flour. each pizza crust requires 3/4 cup of flour. how many pizza crusts can you make?
    13·1 answer
  • Carlos invested some money 9 years ago in a savings account that earned a
    7·1 answer
  • Did I get this right? Please help me
    6·2 answers
  • PLZ HELP ME D HOW J IT EHJ
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!