3.60 A = 3.60 coulombs of charge per second
(3.60 Coul/sec) x (15.3 sec) = 55.08 coulombs of charge
1 coulomb of charge is carried by 6.25 x 10^18 electrons
Number of electrons =
(55.08 Coul) x (6.25 x 10^18 e/coul) = <em>3.4425 x 10^20 electrons</em>
Answer:
Explanation:
Let the magnitude of magnetic field be B .
flux passing through the coil's = area of coil x field x no of turns
Φ = 3.13 x 10⁻⁴ x B x 135 = 422.55 x 10⁻⁴ B .
emf induced = dΦ / dt , Φ is magnetic flux.
current i = dΦ /dt x 1/R
charge through the coil = ∫ i dt
= ∫ dΦ /dt x 1/R dt
= 1 / R ∫ dΦ
= Φ / R
Total resistance R = 61.1 + 44.4 = 105.5 ohm .
3.44 x 10⁻⁵ = 422.55 x 10⁻⁴ B / 105.5
B = 3.44 x 10⁻⁵ x 105.5 / 422.55 x 10⁻⁴
= .86 x 10⁻¹
= .086 T .
Answer:
The person is 187[m] farther and 70° south to east.
Explanation:
We can solve this problem by drawing a sketch of the location of the person and the truck, then we will draw the displacement vectors and finally the length of the vector and the direction of the vector will be measured in order to give the correct indication of where the person will have to move.
First we establish an origin of a coordinate system.
We can see in the attached schema that the red vector is the displacement vector from the last point to where the truck is located.
The length of the vector is 187 [m], and the direction is 70 degrees south to East.
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
Center.........................