Answer:
negative sign denotes deceleration.
Explanation:
Given:
- initial speed of blue car,
- initial speed of yellow car,
- acceleration rate of blue car,
- time for which the blue car accelerates,
- time for which the blue car moves with uniform speed before decelerating,
- total distance covered by the blue car before coming to rest,
- distance at which the the yellow car intercepts the blue car just as the blue car come to rest,
1)
<u>Speed of blue car after 2.6 seconds of starting the motion:</u>
Applying the equation of motion:
<u>Speed of blue car after 7.2 seconds of starting the motion:</u>
∵The car accelerates uniformly for 3.3 seconds after which its speed becomes uniform for the next 14.3 second before it applies the brake.
so,
<u>Distance travelled by the blue car before application of brakes:</u>
This distance will be (distance travelled during the accelerated motion) + (distance travelled at uniform motion)
<em>Now the distance travelled during the accelerated motion:</em>
<em>Now the distance travelled at uniform motion:</em>
Finally:
<u>Acceleration of the blue car once the brakes are applied</u>
Here we have:
initial velocity,
final velocity,
distance covered while deceleration,
Using the equation of motion:
negative sign denotes deceleration.
<u>The total time for which the blue car moves:</u>
........................(1)
<em>Now the time taken to stop the blue car after application of brakes:</em>
Using the eq. of motion:
Putting respective values in eq. (1)
<u>For the acceleration of the yellow car:</u>
We apply the law of motion:
<em>Here the time taken by the yellow car is same for the same distance as it intercepts just before the stopping of blue car.</em>
Now,