1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OlgaM077 [116]
3 years ago
11

To estimate the distance in kilometers of a flash of lightning, count the number of seconds between seeing the flash and hearing

the accompanying thunder, then divide by:__________
Physics
1 answer:
Triss [41]3 years ago
8 0

Answer:

Divide by 3

Explanation:

In order to estimate the distance traveled by a lightening flash in kilometers, we follow these simple steps:

  1. Make a count of the number of seconds in between the period a flash occur and the thunder accompanied by the lightening flash is heard.
  2. Dive the total number of seconds by 3 to get the distance traveled by the flash. This is because in order to cover 1 km, it roughly takes 3 seconds.
You might be interested in
The answer is A and no matter how many times I tried I can't get it.
ryzh [129]
Imagine a skinny straw in the water, standing right over the hole. The WEIGHT of the water in that straw is the force on the tape. Now, the volume of water in the straw is (1 mm^2) times (20 cm). Once you have the volume, you can use the density and gravity to find the weight. And THAT's the force on the tape. If the tape can't hold that force, then it peels off and the water runs out through the hole. /// This is a pretty hard problem, because it involved mm^2, cm, and m^3. You have to be very very very careful with your units as you work through this one. If you've been struggling with it, I'm almost sure the problem is the units.
5 0
3 years ago
Stan is driving north on his scooter at 8m/s, accelerates 11m/s (North) in 4s, drives a constant velocity for the next 15s, and
kow [346]

A) Acceleration: a_1 = 0.75 m/s^2, a_2 = 0, a_3 = -1.57 m/s^2

B) The total displacement is 209.5 m north

C) The average velocity is 8.06 m/s north

Explanation:

A)

Acceleration is defined as:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time taken for the velocity to change from u to v

Here we have:

- In the first  segment,

u = 8 m/s north

v = 11 m/s north

t = 4 s

So the acceleration is

a_1 = \frac{11-8}{4}=0.75 m/s^2 (north)

- In the second segment, Stan drives at a constant velocity: so the final velocity is equal to the initial velocity,

u = v

Therefore, the acceleration is zero: a_2 = 0

- In the third segment,

u = 11 m/s (north)

v = 0 (he comes to a stop)

t = 7 s

So the acceleration is

a=\frac{0-11}{7}=-1.57 m/s^2

And the negative sign means the acceleration is south, opposite to the direction of motion.

B)

In a uniformly accelerated motion, the displacement can be calculated as:

s=ut+\frac{1}{2}at^2

where

u is the initial velocity

a is the acceleration

t is the time

- For the first segment, we have

u = 0\\a = 0.75 m/s^2\\t=4 s

So the displacement is

s_1 = 0+\frac{1}{2}(0.75)(4)^2=6 m

- For the second segment, we have

u = 11 m/s\\a = 0\\t=15 s

So the displacement is

s_2 = (11)(15)+0=165 m

- For the third segment, we have

u = 11\\a = -1.57 m/s^2\\t=7 s

So the displacement is

s_3 = (11)(7)+\frac{1}{2}(-1.57)(7)^2=38.5 m

So the total displacement is:

s = 6 m + 165 m + 38.5 m = 209.5 m

In the north direction (positive direction)

C)

The average velocity is given by:

v=\frac{d}{t}

where

d is the total displacement

t is the total time

Here we have:

d = 209.5 m

t = 26 s

Therefore, the average velocity is

v=\frac{209.5}{26}=8.06 m/s (north)

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

7 0
3 years ago
Jupiter is 5.2 AU from the sun on average. How long is one year on Jupiter?
velikii [3]

Answer:

12 years

Explanation:

12 years is correct because how long is Jupiter one year is 12 years

3 0
2 years ago
Consider the following reaction proceeding at 298.15 K: Cu(s)+2Ag+(aq,0.15 M)⟶Cu2+(aq, 1.14 M)+2Ag(s) If the standard reduction
lutik1710 [3]

Answer : The cell potential for this cell 0.434 V

Solution :

The balanced cell reaction will be,  

Cu(s)+2Ag^{+}(aq)\rightarrow Cu^{2+}(aq)+2Ag(s)

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.

First we have to calculate the standard electrode potential of the cell.

E^o_{[Cu^{2+}/Cu]}=0.34V

E^o_{[Ag^{+}/Ag]}=0.80V

E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}

E^o=0.80V-(0.34V)=0.46V

Now we have to calculate the concentration of cell potential for this cell.

Using Nernest equation :

E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}

where,

n = number of electrons in oxidation-reduction reaction = 2

E_{cell} = ?

Now put all the given values in the above equation, we get:

E_{cell}=0.46-\frac{0.0592}{2}\log \frac{(1.14)\times (1)^2}{(1)\times (0.15)}

E_{cell}=0.434V

Therefore, the cell potential for this cell 0.434 V

8 0
3 years ago
A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A, and the pulse duration is 0.10 μs. (a) Ho
Crank

Answer:

a)N = 3.125 * 10¹¹

b) I(avg)  = 2.5 × 10⁻⁵A

c)P(avg) = 1250W

d)P = 2.5 × 10⁷W

Explanation:

Given that,

pulse current is 0.50 A

duration of pulse Δt = 0.1 × 10⁻⁶s

a) The number of particles equal to the amount of charge in a single pulse divided by the charge of a single particles

N = Δq/e

charge is given by Δq = IΔt

so,

N = IΔt / e

N = \frac{(0.5)(0.1 * 10^-^6)}{(1.6 * 10^-^1^9)} \\= 3.125 * 10^1^1

N = 3.125 * 10¹¹

b) Q = nqt

where q is the charge of 1puse

n = number of pulse

the average current is given as I(avg) = Q/t

I(avg) = nq

I(avg) = nIΔt

         = (500)(0.5)(0.1 × 10⁻⁶)

         = 2.5 × 10⁻⁵A

C)  If the electrons are accelerated to an energy of 50 MeV, the acceleration voltage must,

eV = K

V = K/e

the power is given by

P = IV

P(avg) = I(avg)K / e

P(avg) = \frac{(2.5 * 10^-^5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}

= 1250W

d) Final peak=

P= Ik/e

= = P(avg) = \frac{(0.5)(50 * 10^6 . 1.6 * 10^-^1^9)}{1.6 * 10^-^1^9}\\2.5 * 10^7W

P = 2.5 × 10⁷W

5 0
3 years ago
Read 2 more answers
Other questions:
  • Why do concave lenses always form virtual images?
    11·2 answers
  • 2. A solid sphere and a solid cylinder, both uniform and of the same mass and radius, roll without slipping at the same forward
    10·1 answer
  • Why are two balls connected by a spring a good model for two atoms connected by a chemical bond?
    10·1 answer
  • 7) Straws work on the principle of the outside atmospheric pressure pushing the fluid (for example water) up the straw after you
    10·1 answer
  • The number density of gas atoms at a certain location in the space above our planet is about 1.05 × 1011 m-3, and the pressure i
    14·1 answer
  • The three particles that make up atoms are Question 9 options: protons, neutrons, and isotopes. positives, negatives, and neutra
    6·1 answer
  • A bird flies west with a velocity of 8 m/s . How long does it take the bird to travel a horizontal distance of 400 meters ?
    8·1 answer
  • What happens to the entropy of a piece of wood as it is burned?
    10·1 answer
  • The pedals on a bicycle give a mechanical advantage by allowing you to turn the pedals a __________ distance to turn the _______
    8·1 answer
  • What does Newton’s second law predict about the acceleration if the net force acting on an object increases?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!