Answer:
M g H = 1/2 M v^2 potential energy = kinetic energy
v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2
v = 10.8 m/s
(C)
From the law of conservation of momentum
m1u1+ m2u2= m1v1+ m2v2
110*8+ 110*-10= 110*-10 + 110* v2
v2= 8 m/sec
Answer:
The formula comes from Lorentz force law which includes both the electric and magnetic field. If the electric field is zero, the force law for just the magnetic field is <u>F=q(ν×B</u>) . Here, F is force and is a vector because the force acts in a direction. q is the charge of the particle. v is velocity and is a vector because the particle is moving in some direction. B is the magnetic flux density.
We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd. Since the magnitude of B is constant at every line element of the loop (circle) and it dot product with the line element is B dl everywhere, therefore
∮B dl=μ0 I
B ∮dl=μ0 I
B 2πr=μ0 I
B=μ02πr Id=μ0/4π I dl×rr3
Since, r can be written as r=(rcosθ,rsinθ,z) and dl as dl=(dl,0,0) And now, if we take the cross product we would get
dl×r=−z dlj^+rsinθk^
and therefore the magnitude of dB is equal to
dB=μ0/4π I |dl×r|/r3=μ0/4π I z2+r2sin2θ−−−−−−−−−−√dl/r3
Thus, magnetic field is depending on r,θ,z.
Learn more about Force here-
brainly.com/question/2855467
#SPJ4
Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!
C.Perform push ups and curl-ups daily